previous    next

Oscillations

The equation of motion


Below we inspect the approximation

sin(α) ≅ α      for      α (in radians) << 1


The table gives α in degrees and in radians, sin(α) and the relative error, given by

( α - sin(α) ) / α




 angle (degrees) 
 angle (radians) 
 sin(angle) 
 (angle-sin(angle))/angle 
0
0
0
0
1
0.017453
0.017452
0.00005
2
0.034906
0.034899
0.0002
3
0.05236
0.05234
0.0005
4
0.06981
0.06976
0.0008
5
0.08727
0.08716
0.001
6
0.1047
0.1045
0.002
7
0.1222
0.1219
0.003
8
0.1396
0.1392
0.003
9
0.1571
0.1564
0.004
10
0.1745
0.1736
0.005
11
0.1920
0.1908
0.006
12
0.209
0.208
0.007
13
0.227
0.225
0.009
14
0.244
0.242
0.01
15
0.262
0.259
0.01
16
0.279
0.276
0.01
17
0.297
0.292
0.01
18
0.314
0.309
0.02
19
0.332
0.326
0.02
20
0.349
0.342
0.02
25
0.436
0.423
0.03
30
0.524
0.500
0.05
35
0.611
0.574
0.06
40
0.698
0.643
0.08


From the table we conclude that sin(α)≅α is a good approximation (with errors of at most 0.5%) for α<100 and a reasonably good approximation (with errors of at most 2%) for α<200. This is sufficient for most practical applications of the pendulum.



small angles