previous    next
interference


The expression

u(x,t) = A1sin(ω1t-k1x+φ1) + A2sin(ω2t-k2x+φ2)


can be simplified with standard techniques from goniometry.
Here, we will treat the case A1=A2=A.
For that case we only need to remember

sin(a+b) = sin(a)cos(b) + cos(a)sin(b)

    
and     

sin(-b) = -sin(b)

We obtain then

sin(a+b) + sin(a-b) = 2sin(a)cos(b)

So, if we choose

a+b = ω1t-k1x+φ1      and      a-b = ω2t-k2x+φ2

leading to
2a = (ω12)t - (k1+k2)x + φ1 + φ2

    
and     

2b = (ω12)t - (k1-k2)x + φ1 - φ2

then we reach at the expression

u(x,t) = 2Acos(b)sin(a)






next