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1. Considere três referenciais A, B e C, cujas coordenadas são dadas por respectivamente
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O referencial A está em movimento relativamente ao referencial B com velocidade con-
stante ~β(AB), enquanto o referencial B está em movimento relativamente ao referencial C
com velocidade constante ~β(BC).
A transformação entre as coordenadas dos referenciais A e B é dado pelo ”boost ” Λ(AB):
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(1)

onde

Λ(AB)00 = γAB =
1

√

1− ~β(AB) · ~β(AB)
,

Λ(AB)0i = Λ(AB)i 0 = γABβ
(AB)
i

e Λ(AB)i j = δij +
β
(AB)
i β

(AB)
j

~β(AB) · ~β(AB)
(γAB − 1) ,

para i, j = 1, 2, 3.
A transformação Λ(BC) entre as coordenadas dos referenciais B e C obtem-se pela sub-
stituição de A por B e B por C na Equação (1).
Demonstre Λ(BC)Λ(AB) = Λ(AC)R, onde Λ(AC) represente um Lorentz boost e R uma
rotação espacial.
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Solutions

Exerćıcio 1

For a Lorentz boost in any direction, given by ~β, one has to remember that the space components
which are perpendicular to the boost, do not suffer any contraction. Hence, when we decompose
a three-dimensional vector ~r into its parallel and perpendicular to ~β components, by (β̂ = ~β/β)

~r =
(

β̂ · ~r
)

β̂ + ~r⊥ ,

then the Lorentz boost can be written by (γ = 1/
√
1− β2 )

t′ = γ
{

t+ β
(

β̂ · ~r
)}

and ~r ′ = γ
{(

β̂ · ~r
)

+ βt
}

β̂ + ~r⊥

= γ
{(

β̂ · ~r
)

+ βt
}

β̂ + ~r −
(

β̂ · ~r
)

β̂ .

Next, we elaborate on the expressions

t′ = γt + γ~β · ~r

and ~r ′ = γ~βt+ γ
(

β̂ · ~r
)

β̂ + ~r −
(

β̂ · ~r
)

β̂

= γ~βt+ ~r + (γ − 1)
(

β̂ · ~r
)

β̂ = γ~βt + ~r + (γ − 1)

(

~β · ~r
)

~β

β2
,

which in index notation reads

t′ = γt+ γβixi

and x′

i = γβit+







δij + (γ − 1)
βiβj

β2







xj .

In order to perform the calculus of the product of the two boosts, we will start by simplifying
the matrix (1). For that we define

β =













β1

β2

β3













. (2)

With definition (2) we have

αβT =













α1

α2

α3













(

β1 β2 β3

)

=













α1 0 0

α2 0 0

α3 0 0

























β1 β2 β3

0 0 0

0 0 0













=













α1β1 α1β2 α1β3

α2β1 α2β2 α2β3

α3β1 α3β2 α3β3













.

(3)
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Moreover,

αTβ =
(

α1 α2 α3

)













β1

β2

β3













= α1β1 + α2β2 + α3β3 = ~α · ~β . (4)

The product αβT (3) has the following property

(

αβT
)

σ =













α1β1 α1β2 α1β3

α2β1 α2β2 α2β3

α3β1 α3β2 α3β3

























σ1

σ2

σ3













= (β1σ1 + β2σ2 + β3σ3)













α1

α2

α3













=
(

βTσ
)

α . (5)

The product βTσ (4) has the well-known property

βTσ = ~β · ~σ = ~σ · ~β = σTβ . (6)

Moreover, property (5) follows from the fact that βTσ is a scalar (6) and the associativity property
of matrix multiplication:

(

αβT
)

σ = α
(

βTσ
)

=
(

βTσ
)

α .

Furthermore, we define

I =













1 0 0

0 1 0

0 0 1













.

Using the above definitions and γ2β2 = γ2 − 1, we may write













Λ1
1 Λ1

2 Λ1
3

Λ2
1 Λ2

2 Λ2
3

Λ3
1 Λ3

2 Λ3
3













= I +
γ − 1

~β · ~β













β1β1 β1β2 β1β3

β2β1 β2β2 β2β3

β3β1 β3β2 β3β3













= I + (γ − 1)
ββT

βTβ
= I +

γ2

γ + 1
ββT ,

(

Λ0
1 Λ0

2 Λ0
3

)

= γ βT ,












Λ0
1

Λ0
2

Λ0
3













= γ β .

Putting things together, we find

Λ =





















Λ0
0 Λ0

1 Λ0
2 Λ0

3

Λ1
0 Λ1

1 Λ1
2 Λ1

3

Λ2
0 Λ2

1 Λ2
2 Λ2

3

Λ3
0 Λ3

1 Λ3
2 Λ3

3





















=









γ γ βT

γ β I +
γ2

γ + 1
ββT









. (7)
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1. Λ(BC)Λ(AB)

Next, we devote ourselves to the calculus of Λ(BC)Λ(AB). We write

Λ(BC)Λ(AB) = (8)

=









γBC γBC βT
BC

γBC βBC I +
γ2
BC

γBC + 1
βBCβ

T
BC

















γAB γAB βT
AB

γAB βAB I +
γ2
AB

γAB + 1
βABβ

T
AB









=



































γBCγAB + γBCγABβ
T
BCβAB γBCγABβ

T
AB + γBCβ

T
BC + γBC

γ2
AB

γAB + 1
βT

BCβABβ
T
AB

γBCγABβBC + γABβAB+ γBCγABβBCβ
T
AB+

+
γ2
BC

γBC + 1
γABβBCβ

T
BCβAB +I +

γ2
BC

γBC + 1
βBCβ

T
BC +

γ2
AB

γAB + 1
βABβ

T
AB+

+
γ2
BC

γBC + 1
γ2
AB

γAB + 1
βBCβ

T
BCβABβ

T
AB



































.

From formula (8) we read

(8a) [Λ(BC)Λ(AB)]00 = γBCγAB + γBCγABβ
T
BCβAB

(8b) [Λ(BC)Λ(AB)]0i = γBCγABβ
T
AB + γBCβ

T
BC + γBC

γ2
AB

γAB + 1
βT

BCβABβ
T
AB

(8c) [Λ(BC)Λ(AB)]i 0 = γBCγABβBC + γABβAB +
γ2
BC

γBC + 1
γABβBCβ

T
BCβAB

(8d) [Λ(BC)Λ(AB)]i j = I + γBCγABβBCβ
T
AB +

γ2
BC

γBC + 1
βBCβ

T
BC +

+
γ2
AB

γAB + 1
βABβ

T
AB +

γ2
BC

γBC + 1

γ2
AB

γAB + 1
βBCβ

T
BCβABβ

T
AB

= I +
γ2
AB

γAB + 1
βABβ

T
AB +

γ2
BC

γBC + 1
βBCβ

T
BC + γBCγAB







1 +
γBCγABβ

T
BCβAB

(γBC + 1) (γAB + 1)







βBCβ
T
AB .
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2. βAC

Before we continue, we first must translate βAB into βAC . For that it is necessary to know how
velocities transform from B to C. Using Eq. (7), we deduce





t(C)

~x (C)



 =









γBC γBC βT
BC

γBC βBC I +
γ2
BC

γBC + 1
βBCβ

T
BC













t(B)

~x (B)





=











γBCt
(B) + γBC βT

BC~x
(B)

γBC βBCt
(B) +

{

I +
γ2
BC

γBC + 1
βBCβ

T
BC

}

~x (B)











. (9)

From the result (9) we find

d t(C)

dt(B)
= γBC + γBC βT

BC

d ~x (B)

dt(B)
= γBC + γBC βT

BC~v
(B)

and

d ~x(C)

dt(B)
= γBC βBC +







I +
γ2
BC

γBC + 1
βBCβ

T
BC







d ~x (B)

dt(B)
= γBC βBC +







I +
γ2
BC

γBC + 1
βBCβ

T
BC







~v(B)

Hence, the transformation which we are looking for, results in

d ~x(C)

dt(c)
=

d t(B)

dt(C)

d ~x(C)

dt(B)
=

d ~x(C)

dt(B)

d t(C)

dt(B)

=

γBC βBC +

{

I +
γ2
BC

γBC + 1
βBCβ

T
BC

}

~v(B)

γBC + γBC βT
BC~v

(B)
. (10)

In particular, for βAC , which is the velocity of reference frame A with respect to reference frame
C, we obtain, in terms of the velocity βAB of reference frame A with respect to reference frame
B, the following expression

βAC =

γBC βBC +

{

I +
γ2
BC

γBC + 1
βBCβ

T
BC

}

βAB

γBC + γBC βT
BCβAB

=
(γBC + 1)βAB +

{

γBC (γBC + 1) + γ2
BC

(

βT
BCβAB

)}

βBC

γBC (γBC + 1)
{

1 + βT
BCβAB

}

. (11)

Notice that, in the above, we made use of (see Eq. 5)

(

βBCβ
T
BC

)

βAB = βBC

(

βT
BCβAB

)

=
(

βT
BCβAB

)

βBC . (12)

Notice, furthermore, (see Eq. 6) that βT
BCβBC and βT

BCβAB are scalars.

5



3. γAC

Next, we need to determine γAC in terms of γBC , βBC and βAB.
Let us start with (see Eq. 4),

∣

∣

∣

~βAC

∣

∣

∣

2
= βT

ACβAC =

=









(γBC + 1)βAB +
{

γBC (γBC + 1) + γ2
BC

(

βT
BCβAB

)}

βBC

γBC (γBC + 1)
{

1 + βT
BCβAB

}









T









(γBC + 1)βAB +
{

γBC (γBC + 1) + γ2
BC

(

βT
BCβAB

)}

βBC

γBC (γBC + 1)
{

1 + βT
BCβAB

}









. (13)

The numerator of the product (13) has 4 terms. We collect them one by one:

(γBC + 1)βT
AB (γBC + 1)βAB = (γBC + 1)2 βT

ABβAB , (14)

(γBC + 1)βT
AB

{

γBC (γBC + 1) + γ2
BC

(

βT
BCβAB

)}

βBC =

= (γBC + 1)
{

γBC (γBC + 1) + γ2
BC

(

βT
BCβAB

)}

βT
ABβBC

= (γBC + 1)
{

γBC (γBC + 1) + γ2
BC

(

βT
BCβAB

)}

βT
BCβAB , (15)

{

γBC (γBC + 1) + γ2
BC

(

βT
BCβAB

)}

βT
BC (γBC + 1)βAB =

= (γBC + 1)
{

γBC (γBC + 1) + γ2
BC

(

βT
BCβAB

)}

βT
BCβAB , (16)

{

γBC (γBC + 1) + γ2
BC

(

βT
BCβAB

)}2
βT

BCβBC =

=
{

(γBC + 1) + γBC

(

βT
BCβAB

)}2
γ2
BCβ

T
BCβBC

=
{

(γBC + 1) + γBC

(

βT
BCβAB

)}2 (

γ2
BC − 1

)

, (17)

The sum of the 4 terms of the numerator of the product (13), Eqs. (14-17), gives, also using the
fact that γ2β2 = γ2 − 1

numerator = (γBC + 1)

[

(γBC + 1)βT
ABβAB +

+2
{

γBC (γBC + 1) + γ2
BC

(

βT
BCβAB

)}

βT
BCβAB +

+ (γBC − 1)
{

(γBC + 1) + γBC

(

βT
BCβAB

)}2
]
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= (γBC + 1)

[

(γBC + 1)βT
ABβAB + (γBC + 1)

(

γ2
BC − 1

)

+ 2γ2
BC (γBC + 1)βT

BCβAB + γ2
BC (γBC + 1)

(

βT
BCβAB

)2
]

= (γBC + 1)2
[

βT
ABβAB +

(

γ2
BC − 1

)

+ 2γ2
BCβ

T
BCβAB + γ2

BC

(

βT
BCβAB

)2
]

. (18)

The denominator of the product (13) gives

denominator = γ2
BC (γBC + 1)2

(

1 + βT
BCβAB

)2
. (19)

Hence, putting things together, also using γ−2 = 1− βTβ, we have for Eq. (13)

γ−2
AC = 1−

∣

∣

∣

~βAC

∣

∣

∣

2
= 1− βT

ACβAC = 1− numerator

denominator
=

= 1−
βT

ABβAB + 2γ2
BC

(

βT
BCβAB

)

+ γ2
BC

(

βT
BCβAB

)2
+ γ2

BC − 1

γ2
BC

(

1 + βT
BCβAB

)2

=
1− βT

ABβAB

γ2
BC

(

1 + βT
BCβAB

)2
=

1

γ2
BCγ

2
AB

(

1 + βT
BCβAB

)2
. (20)

Hence,
γAC = γBCγAB

(

1 + βT
BCβAB

)

, (21)

which is exactly the [Λ(BC)Λ(AB)]00 term of expression (8a).
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4. γACβAC

Next, using Eqs. (11) and (21), we determine

γACβAC =

= γBCγAB

(

1 + βT
BCβAB

)

(γBC + 1)βAB +
{

γBC (γBC + 1) + γ2
BC

(

βT
BCβAB

)}

βBC

γBC (γBC + 1)
{

1 + βT
BCβAB

}

= γABβAB +







γBCγAB +
γ2
BCγAB

γBC + 1
βT

BCβAB







βBC

= γABβAB +







γBCγAB +
γBC(γAC − γBCγAB)

γBC + 1







βBC

= γABβAB +
γBC(γAC + γAB)

γBC + 1
βBC , (22)

which are exactly the [Λ(BC)Λ(AB)]i 0 terms of expression (8c).
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5. γACβ
T
AC

One expects now that the [Λ(BC)Λ(AB)]0i terms are equal to γACβ
T
AC . However, as one

can easily see from (8b) and (8c), that is not the case. The reason is that a general Lorentz
transformation is the combination of a Lorentz boost and a rotation R:

Λ(BC)Λ(AB) =









γAC γAC βT
AC

γAC βAC I +
γ2
AC

γAC + 1
βACβ

T
AC













1 0

0 R





=









γAC γAC βT
ACR

γAC βAC R +
γ2
AC

γAC + 1
βACβ

T
AC R









. (23)

It leaves the [Λ(BC)Λ(AB)]00 and [Λ(BC)Λ(AB)]i 0 nicely in peace, exactly as we found. But,
the [Λ(BC)Λ(AB)]0i and [Λ(BC)Λ(AB)]i j terms are affected.
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6. R

We deduce from Eq. (23) for R, also using expressions (8), (8a-d)





1 0

0 R



 = Λ(AC)−1Λ(BC)Λ(AB) = (24)

=









γAC γAC βT
AC

γAC βAC I +
γ2
AC

γAC + 1
βACβ

T
AC









−1



































γBCγAB + γBCγABβ
T
BCβAB γBCγABβ

T
AB + γBCβ

T
BC + γBC

γ2
AB

γAB + 1
βT

BCβABβ
T
AB

γBCγABβBC + γABβAB+ I + γBCγABβBCβ
T
AB+

+
γ2
BC

γBC + 1
γABβBCβ

T
BCβAB +

γ2
BC

γBC + 1
βBCβ

T
BC +

γ2
AB

γAB + 1
βABβ

T
AB+

+
γ2
BC

γBC + 1
γ2
AB

γAB + 1
βBCβ

T
BCβABβ

T
AB



































.

Now, the inverse of a boost with velocity β is the same expression, but with β replaced by −β.
Consequently, also using relation (21),





1 0

0 R



 = Λ(AC)−1Λ(BC)Λ(AB) = (25)

=









γAC −γAC βT
AC

−γAC βAC I +
γ2
AC

γAC + 1
βACβ

T
AC





































γAC γBCβ
T
BC +

γAB(γAC + γBC)
γAB + 1 βT

AB

γACβAC I +
γ2
AB

γAB + 1
βABβ

T
AB +

γ2
BC

γBC + 1
βBCβ

T
BC+

+γBCγAB

1 + γAC + γBC + γAB

(γBC + 1) (γAB + 1)
βBCβ

T
AB





























.

We may start by verifying the (0, 0) element of the rotation matrix, which should give 1. We
obtain from the matrix product the following result:

[Λ(AC)−1Λ(BC)Λ(AB)]00 = γ2
AC − γ2

ACβ
T
ACβAC = 1 , (26)

which is what we expected.
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The (0, i) element of the matrix product (25) must vanish. We find

[Λ(AC)−1Λ(BC)Λ(AB)]i 0 = −γ2
ACβAC +



I +
γ2
AC

γAC + 1
βACβ

T
AC



 γACβAC = (27)

= −γACβAC



−γAC + 1 +
γ2
AC

γAC + 1
βT

ACβAC



 = −γACβAC



−γAC + 1 +
γ2
AC − 1

γAC + 1



 = 0 .

Also the (0, i) element of the matrix product (25) must vanish:

[Λ(AC)−1Λ(BC)Λ(AB)]0i = γAC



γBCβ
T
BC +

γAB(γAC + γBC)

γAB + 1
βT

AB



+

−γACβ
T
AC



I +
γ2
AB

γAB + 1
βABβ

T
AB +

γ2
BC

γBC + 1
βBCβ

T
BC + γBCγAB

1 + γAC + γBC + γAB

(γBC + 1) (γAB + 1)
βBCβ

T
AB





(28)

Before we determine the (0, i) element of the matrix product (25), we perform the following
calculus, making use of expressions (21) for γAC and (22) for γAC βAC .

γAC βT
ACβAB =



γABβ
T
AB +

γBC(γAC + γAB)

γBC + 1
βT

BC



 βAB =

= γABβ
T
ABβAB +

γBC(γAC + γAB)

γBC + 1
βT

BCβAB =
1

γAB



γ2
AB − 1 +

(γAC − γBCγAB)(γAC + γAB)

γBC + 1





=
1

γAB





(γAC + γAB)
2

γBC + 1
− γACγAB − 1



 (29)

and

γAC βT
ACβBC =



γABβ
T
AB +

γBC(γAC + γAB)

γBC + 1
βT

BC



 βBC =

= γABβ
T
ABβBC +

γBC(γAC + γAB)

γBC + 1
βT

BCβBC =
1

γBC



γAC − γBCγAB +
(γ2

BC − 1)(γAC + γAB)

γBC + 1





= γAC −
γAB

γBC

. (30)

With the use of Eqs. (22), (29) and (30), we obtain for the (0, i) element of the matrix product
(25) the following.

[Λ(AC)−1Λ(BC)Λ(AB)]0i = γACγBCβ
T
BC +

γACγAB(γAC + γBC)

γAB + 1
βT

AB − γACβ
T
AC+

11



−
γACγ

2
AB

γAB + 1
βT

ACβABβ
T
AB −

γACγ
2
BC

γBC + 1
βT

ACβBCβ
T
BC − γACγBCγAB

1 + γAC + γBC + γAB

(γBC + 1) (γAB + 1)
βT

ACβBCβ
T
AB

= γACγBCβ
T
BC +

γACγAB(γAC + γBC)

γAB + 1
βT

AB − γABβ
T
AB −

γBC(γAC + γAB)

γBC + 1
βT

BC +

−
γ2
AB

γAB + 1

1

γAB





(γAC + γAB)
2

γBC + 1
− γACγAB − 1



βT
AB −

γ2
BC

γBC + 1



γAC −
γAB

γBC



βT
BC +

−γBCγAB

1 + γAC + γBC + γAB

(γBC + 1) (γAB + 1)



γAC −
γAB

γBC



βT
AB

=



γACγBC −
γBC(γAC + γAB)

γBC + 1
−

γ2
BC

γBC + 1



γAC −
γAB

γBC







βT
BC +

+





γACγAB(γAC + γBC)

γAB + 1
− γAB −

γ2
AB

γAB + 1

1

γAB





(γAC + γAB)
2

γBC + 1
− γACγAB − 1



 +

−γBCγAB

1 + γAC + γBC + γAB

(γBC + 1) (γAB + 1)



γAC −
γAB

γBC







βT
AB

=
γBC

γBC + 1
[γAC(γBC + 1)− γAC − γAB − (γACγBC − γAB)]β

T
BC +

+
γAB

(γBC + 1) (γAB + 1)

[

γAC(γAC + γBC)(γBC + 1)− (γBC + 1) (γAB + 1)− (γAC + γAB)
2 +

+(γACγAB + 1)(γBC + 1)− (1 + γAC + γBC + γAB)(γACγBC − γAB)
]

βT
AB

= 0 , (31)

exactly as we expected.
So, we are then ready to tackle R = [Λ(AC)−1Λ(BC)Λ(AB)]i j. But, first we make an important

observation, namely, from the fact that [Λ(AC)−1Λ(BC)Λ(AB)]0i vanishes, we may deduce

γACβ
T
AC



I +
γ2
AB

γAB + 1
βABβ

T
AB +

γ2
BC

γBC + 1
βBCβ

T
BC + γBCγAB

1 + γAC + γBC + γAB

(γBC + 1) (γAB + 1)
βBCβ

T
AB





= γAC



γBCβ
T
BC +

γAB(γAC + γBC)

γAB + 1
βT

AB



 . (32)

It is relation (32) which reduces by factors the length of the formulas. Without it, one would
obtain lengthy expressions which are difficult to manage and may lead to several possibilities of
mistakes in signs and coefficients.
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Using Eqs. (22), (25) and (32), we arrive at

R = −γACβAC



γBCβ
T
BC +

γAB(γAC + γBC)

γAB + 1
βT

AB



+

+



I +
γ2
AC

γAC + 1
βACβ

T
AC







I +
γ2
AB

γAB + 1
βABβ

T
AB +

γ2
BC

γBC + 1
βBCβ

T
BC + γBCγAB

1 + γAC + γBC + γAB

(γBC + 1) (γAB + 1)
βBCβ

T
AB





We split the product of the second term in two terms. One term equals I times the expression

in the last line and the other
γAC

γAC + 1
βACγACβ

T
AC times that expression. The latter term can be

handled with formula (32). We obtain then

R = −γACβAC



γBCβ
T
BC +

γAB(γAC + γBC)

γAB + 1
βT

AB



+

+I +
γ2
AB

γAB + 1
βABβ

T
AB +

γ2
BC

γBC + 1
βBCβ

T
BC + γBCγAB

1 + γAC + γBC + γAB

(γBC + 1) (γAB + 1)
βBCβ

T
AB +

+
γ2
AC

γAC + 1
βAC



γBCβ
T
BC +

γAB(γAC + γBC)

γAB + 1
βT

AB





Next, we add the first term and the last term, using −γAC +
γ2
AC

γAC + 1
= − γAC

γAC + 1
.

R = I −
γAC

γAC + 1
βAC



γBCβ
T
BC +

γAB(γAC + γBC)

γAB + 1
βT

AB



+

+
γ2
AB

γAB + 1
βABβ

T
AB +

γ2
BC

γBC + 1
βBCβ

T
BC + γBCγAB

1 + γAC + γBC + γAB

(γBC + 1) (γAB + 1)
βBCβ

T
AB

Here, we substitute in the second term, expression (22) for γACβAC .

R = I −
1

γAC + 1



γABβAB +
γBC(γAC + γAB)

γBC + 1
βBC







γBCβ
T
BC +

γAB(γAC + γBC)

γAB + 1
βT

AB



+

+
γ2
AB

γAB + 1
βABβ

T
AB +

γ2
BC

γBC + 1
βBCβ

T
BC + γBCγAB

1 + γAC + γBC + γAB

(γBC + 1) (γAB + 1)
βBCβ

T
AB

Subsequently, we elaborate the second term.

R = I −
γBCγAB

γAC + 1
βABβ

T
BC −

γ2
AB(γAC + γBC)

(γAC + 1)(γAB + 1)
βABβ

T
AB+
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−
γ2
BC(γAC + γAB)

(γAC + 1)(γBC + 1)
βBCβ

T
BC −

γBCγAB(γAC + γBC)(γAC + γAB)

(γAC + 1)(γBC + 1)(γAB + 1)
βBCβ

T
AB +

+
γ2
AB

γAB + 1
βABβ

T
AB +

γ2
BC

γBC + 1
βBCβ

T
BC + γBCγAB

1 + γAC + γBC + γAB

(γBC + 1) (γAB + 1)
βBCβ

T
AB

In the next step, we join terms of the same matrices βABβ
T
AB, βABβ

T
BC , βBCβ

T
AB and βBCβ

T
BC .

R = I −
γBCγAB

γAC + 1
βABβ

T
BC +







−
γ2
AB(γAC + γBC)

(γAC + 1)(γAB + 1)
+

γ2
AB

γAB + 1







βABβ
T
AB+

+







−
γ2
BC(γAC + γAB)

(γAC + 1)(γBC + 1)
+

γ2
BC

γBC + 1







βBCβ
T
BC +

+







−
γBCγAB(γAC + γBC)(γAC + γAB)

(γAC + 1)(γBC + 1)(γAB + 1)
+ γBCγAB

1 + γAC + γBC + γAB

(γBC + 1) (γAB + 1)







βBCβ
T
AB

and elaborate on the coefficients.

R = I −
γBCγAB

γAC + 1
βABβ

T
BC −

γ2
AB(γBC − 1)

(γAC + 1)(γAB + 1)
βABβ

T
AB+

−
γ2
BC(γAB − 1)

(γAC + 1)(γBC + 1)
βBCβ

T
BC +

γBCγAB(1 + 2γAC + γBC + γAB − γBCγAB)

(γAC + 1)(γBC + 1)(γAB + 1)
βBCβ

T
AB

14



7. The rotation

Now, we study the details of the rotation. Thereto, we determine the coefficients of βABβ
T
BC −

βBCβ
T
AB and βABβ

T
BC + βBCβ

T
AB, and join the remaining two, βABβ

T
AB and βBCβ

T
BC , with a

common denominator.

R = I −
γBCγAB(1 + γAC + γBC + γAB)

(γAC + 1)(γBC + 1)(γAB + 1)

(

βABβ
T
BC − βBCβ

T
AB

)

+

+
γBCγAB(γAC − γBCγAB)

(γAC + 1)(γBC + 1)(γAB + 1)

(

βABβ
T
BC + βBCβ

T
AB

)

+

−
γ2
AB(γ

2
BC − 1)βABβ

T
AB + γ2

BC(γ
2
AB − 1)βBCβ

T
BC

(γAC + 1)(γBC + 1)(γAB + 1)

Finally, we substitute the relations γBCγABβ
T
BCβAB = γAC−γBCγAB (see Eq. 21), γ2

BCβ
T
BCβBC =

γ2
BC − 1 and γ2

ABβ
T
ABβAB = γ2

AB − 1

R = I −
γBCγAB(1 + γAC + γBC + γAB)

(γAC + 1)(γBC + 1)(γAB + 1)

(

βABβ
T
BC − βBCβ

T
AB

)

+

+
γ2
BCγ

2
AB

(γAC + 1)(γBC + 1)(γAB + 1)

{

βABβ
T
BCβABβ

T
BC + βBCβ

T
BCβABβ

T
AB +

−βABβ
T
BCβBCβ

T
AB − βBCβ

T
ABβABβ

T
BC

}

and write the result in a more compact form.

R = I −
γBCγAB(1 + γAC + γBC + γAB)

(γAC + 1)(γBC + 1)(γAB + 1)

(

βABβ
T
BC − βBCβ

T
AB

)

+

+
γ2
BCγ

2
AB

(γAC + 1)(γBC + 1)(γAB + 1)

(

βABβ
T
BC − βBCβ

T
AB

)2
. (33)

In order to understand that the result (33) represents a rotation, we write the explicit matrix
form for βABβ

T
BC − βBCβ

T
AB.

βABβ
T
BC − βBCβ

T
AB =

=















β
(AB)
1 β

(BC)
1 β

(AB)
1 β

(BC)
2 β

(AB)
1 β

(BC)
3

β
(AB)
2 β

(BC)
1 β

(AB)
2 β

(BC)
2 β

(AB)
2 β

(BC)
3

β
(AB)
3 β

(BC)
1 β

(AB)
3 β

(BC)
2 β

(AB)
3 β

(BC)
3















−















β
(BC)
1 β

(AB)
1 β

(BC)
1 β

(AB)
2 β

(BC)
1 β

(AB)
3

β
(BC)
2 β

(AB)
1 β

(BC)
2 β

(AB)
2 β

(BC)
2 β

(AB)
3

β
(BC)
3 β

(AB)
1 β

(BC)
3 β

(AB)
2 β

(BC)
3 β

(AB)
3
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=















0 −
(

β
(BC)
1 β

(AB)
2 − β

(BC)
2 β

(AB)
1

) (

β
(BC)
3 β

(AB)
1 − β

(BC)
1 β

(AB)
3

)

(

β
(BC)
1 β

(AB)
2 − β

(BC)
2 β

(AB)
1

)

0 −
(

β
(BC)
2 β

(AB)
3 − β

(BC)
3 β

(AB)
2

)

−
(

β
(BC)
3 β

(AB)
1 − β

(BC)
1 β

(AB)
3

) (

β
(BC)
2 β

(AB)
3 − β

(BC)
3 β

(AB)
2

)

0















=

















0 −
[

~βBC × ~βAB

]

3

[

~βBC × ~βAB

]

2
[

~βBC × ~βAB

]

3
0 −

[

~βBC × ~βAB

]

1

−
[

~βBC × ~βAB

]

2

[

~βBC × ~βAB

]

1
0

















=
(

~βBC × ~βAB

)

· ~A , (34)

where the generators, A1, A2 and A3, of rotations are given by

A1 =
d

dα
R(x̂, α)

∣

∣

∣

∣

∣

α = 0
=







0 0 0
0 0 −1
0 1 0





 , A2 =
d

dϑ
R(ŷ, ϑ)

∣

∣

∣

∣

∣

ϑ = 0
=







0 0 1
0 0 0

−1 0 0







and A3 =
d

dϕ
R(ẑ, ϕ)

∣

∣

∣

∣

∣

ϕ = 0
=







0 −1 0
1 0 0
0 0 0





 , (35)

for

R(x̂, α) =







1 0 0
0 cos(α) − sin(α)
0 sin(α) cos(α)





 , R(ŷ, ϑ) =







cos(ϑ) 0 sin(ϑ)
0 1 0

− sin(ϑ) 0 cos(ϑ)





 ,

and R(ẑ, ϕ) =







cos(ϕ) − sin(ϕ) 0
sin(ϕ) cos(ϕ) 0

0 0 1





 . (36)

For a rotation R (~n ) with rotation axis n̂ and rotation angle n, one has the following expression
(see Eq. 67)

R (~n ) = exp{~n · ~A} = I + sin(n)(n̂ · ~A) + (1− cos(n))(n̂ · ~A)2 . (37)

Hence, from Eq. (34), we find that the rotation axis of rotation (33) is given by

n̂ =

~βBC × ~βAB

∣

∣

∣

~βBC × ~βAB

∣

∣

∣

=
1

∣

∣

∣

~βBC × ~βAB

∣

∣

∣















β
(BC)
2 β

(AB)
3 − β

(BC)
3 β

(AB)
2

β
(BC)
3 β

(AB)
1 − β

(BC)
1 β

(AB)
3

β
(BC)
1 β

(AB)
2 − β

(BC)
2 β

(AB)
1















. (38)

Comparison of Eq. (33) with the formula given in Eq. (37), gives for the rotation angle n the
following relations:

sin(n) = −
γBCγAB(1 + γAC + γBC + γAB)

(γAC + 1)(γBC + 1)(γAB + 1)

∣

∣

∣

~βBC × ~βAB

∣

∣

∣ , (39)
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and

1− cos(n) =
γ2
BCγ

2
AB

(γAC + 1)(γBC + 1)(γAB + 1)

∣

∣

∣

~βBC × ~βAB

∣

∣

∣

2
. (40)

In order to verify whether the relations (39) and (40) satisfy the condition sin2(n)+cos2(n) = 1,

we need to determine
∣

∣

∣

~βBC × ~βAB

∣

∣

∣.

∣

∣

∣

~βBC × ~βAB

∣

∣

∣

2
=
(

~βAB · ~βAB

) (

~βBC · ~βBC

)

−
(

~βAB · ~βBC

)2

=
(

βT
ABβAB

) (

βT
BCβBC

)

−
(

βT
ABβBC

)2
=
(

βT
ABβAB

) (

βT
BCβBC

)

−
(

γAC

γBCγAB

− 1

)2

=
1

γ2
ABγ

2
BC

{

(γ2
AB − 1)(γ2

BC − 1)− (γAC − γBCγAB)
2
}

. (41)

One obtains then for the rotation angle

sin2(n) =
(1 + γAC + γBC + γAB)

2 {(γ2
AB − 1)(γ2

BC − 1)− (γAC − γBCγAB)
2}

(γAC + 1)2(γBC + 1)2(γAB + 1)2
, (42)

and

1− cos(n) =
{(γ2

AB − 1)(γ2
BC − 1)− (γAC − γBCγAB)

2}

(γAC + 1)(γBC + 1)(γAB + 1)
. (43)

Hence,

cos(n) = 1−
{(γ2

AB − 1)(γ2
BC − 1)− (γAC − γBCγAB)

2}

(γAC + 1)(γBC + 1)(γAB + 1)
=

=
(γAC + 1)(γBC + 1)(γAB + 1)− (γ2

AB − 1)(γ2
BC − 1) + (γAC − γBCγAB)

2

(γAC + 1)(γBC + 1)(γAB + 1)

=
γAC(1 + γAC + γBC + γAB − γBCγAB) + γBC(γBC + 1) + γAB(γAB + 1)

(γAC + 1)(γBC + 1)(γAB + 1)
. (44)

Here, we perform some of the arithmetic for sin2+cos2 in MAXIMA:

om2: (gbc*gbc-1)*(gab*gab-1)-(gac-gbc*gab)*(gac-gbc*gab);

den: (gac+1)*(gbc+1)*(gab+1);

s2: (1+gac+gbc+gab)*(1+gac+gbc+gab)*om2;

c: den-om2;

p: c*c+s2-den*den;

expand(p);

quit();
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which results in P = 0, hence proofs that sin2+cos2 = 1.
The tangent of the rotation angle n is given by

tan2(n) =
(1 + γAC + γBC + γAB)

2 {(γ2
AB − 1)(γ2

BC − 1)− (γAC − γBCγAB)
2}

{γAC(1 + γAC + γBC + γAB − γBCγAB) + γBC(γBC + 1) + γAB(γAB + 1)}2
, (45)

where, from Eq. (21) one has the relation of γAC with ~βBC and ~βAB, namely

γAC = γBCγAB

(

1 + ~βBC · ~βAB

)

and γAC − γBCγAB = γBCγAB
~βBC · ~βAB . (46)

Hence, the rotation axis and the rotation angle can be fully expressed in terms of ~βBC and ~βAB.
For further studies of the rotation R, formulas (39) and (40) seem more transparant. After the

substitutions

γAC = γBCγAB {1 + βBCβAB cos(θ)} and
∣

∣

∣

~βBC × ~βAB

∣

∣

∣ = βBCβAB sin(θ) , (47)

where θ represents the angle between the two boosts ~βBC and ~βAB, one obtains for formulas (39)
and (40) the following expressions.

sin(n) = −
γBCγAB(1 + γBCγAB {1 + βBCβAB cos(θ)}+ γBC + γAB)

(γBCγAB {1 + βBCβAB cos(θ)}+ 1)(γBC + 1)(γAB + 1)
βBCβAB sin(θ) , (48)

and

1− cos(n) =
γ2
BCγ

2
AB

(γBCγAB {1 + βBCβAB cos(θ)}+ 1)(γBC + 1)(γAB + 1)
β2
BCβ

2
AB sin2(θ) . (49)

Notice from Eqs. (48) and (49) that when the boosts ~βBC and ~βAB are parallel, sin(n) = 0 and
cos(n) = 1, hence, no rotation occurs.

Furthermore, when the boosts ~βBC and ~βAB are perpendicular, sin(n) = 1 and cos(n) = 0, one
finds

cos(n) =
γAB + γBC

1 + γABγBC

and sin(n) = −
γABγBCβABβBC

1 + γABγBC

.
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Rotations in three dimensions

The three rotations around the principal axes of the orthogonal coordinate system (x, y, z) are
given by:

R(x̂, α) =







1 0 0
0 cos(α) − sin(α)
0 sin(α) cos(α)





 , R(ŷ, ϑ) =







cos(ϑ) 0 sin(ϑ)
0 1 0

− sin(ϑ) 0 cos(ϑ)





 ,

and R(ẑ, ϕ) =







cos(ϕ) − sin(ϕ) 0
sin(ϕ) cos(ϕ) 0

0 0 1





 . (50)

Those matrices are unimodular (i.e. have unit determinant) and orthogonal.
As an example that rotations in general do not commute, let us take a rotation of 90◦ around

the x-axis and a rotation of 90◦ around the y-axis. It is, using the above definitions (50), easy to
show that:

R(x̂, 90◦)R(ŷ, 90◦) 6= R(ŷ, 90◦)R(x̂, 90◦) . (51)

An arbitrary rotation can be characterized in various different ways. One way is as follows: Let
ê1, ê2 and ê3 represent the orthonormal basis vectors of the coordinate system and let ~u1 = ê1,
~u2 = ê2 and ~u3 = ê3 be three vectors in three dimensions which before the rotation R are at the
positions of the three basis vectors. The images of the three vectors are after an active rotation
R given by:

~u′

i = R ~ui for i = 1, 2, 3.

The rotation matrix forR at the above defined basis êi (i = 1, 2, 3), consists then of the components
of those image vectors, i.e.

R =

















(~u′

1)1 (~u′

2)1 (~u′

3)1

(~u′

1)2 (~u′

2)2 (~u′

3)2

(~u′

1)3 (~u′

2)3 (~u′

3)3

















. (52)

A second way to characterize a rotation is by means of its rotation axis, which is the one-
dimensional subspace of the three dimensional space which remains invariant under the rotation,
and by its rotation angle.

In both cases are three free parameters involved: The direction of the rotation axis in the second
case, needs two parameters and the rotation angle gives the third. In the case of the rotation R
of formula (52) we have nine different matrix elements. Now, if ê1, ê2 and ê3 form a righthanded
set of unit vectors, i.e. ê1× ê2 = ê3, then consequently form the rotated vectors ~u′

1, ~u
′

2 and ~u′

3 also
a righthanded orthonormal system, i.e. ~u′

3 = ~u′

1 × ~u′

2. This leaves us with the six components of
~u′

1 and ~u′

2 as parameters. But there are three more conditions, |~u′

1| = |~u′

2| = 1 and ~u′

1 · ~u′

2 = 0. So,
only three of the nine components of R are free.

The matrix R of formula (52) is unimodular and orthogonal. In order to proof those properties
of R, we first introduce, for now and for later use, the Levi-Civita tensor ǫijk, given by:
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ǫijk =











+1 for ijk = 123, 312 and 231.
−1 for ijk = 132, 213 and 321.
0 for all other combinations.

(53)

This tensor has the following properties:

(i) For symmetric permutations of the indices:

ǫjki = ǫkij = ǫijk. (54)

(ii) For antisymmetric permutations of indices:

ǫikj = ǫjik = ǫkji = −ǫijk. (55)

Now, using the definition of the Levi-Civita tensor and the fact that the rotated vectors ~u′

1,
~u′

2 and ~u′

3 form a righthanded orthonormal system, we find for the determinant of the rotation
matrix R of formula (52) the following:

det(R) = ǫijkRi1Rj2Rk3 = ǫjik(~u
′

1)i(~u
′

2)j(~u
′

3)k

= (~u′

1 × ~u′

2)k(~u
′

3)k = ~u′

3 · ~u′

3 = 1 .

And for the transposed of the rotation matrix R we obtain moreover:

(

RTR
)

ij
=
(

RT
)

ik
Rkj = RkiRkj = (~u′

i)k(~u
′

j)k = δij .

Consequently, the rotation matrix R is unimodular and orthogonal.
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The Euler angles.

So, rotations in three dimensions are characterized by three parameters. Here we consider the
rotation which rotates a point ~a, defined by:

~a = (sin(ϑ) cos(ϕ), sin(ϑ) sin(ϕ), cos(ϑ)) , (56)

to the position ~b, defined by

~b = (sin(ϑ′) cos(ϕ′), sin(ϑ′) sin(ϕ′), cos(ϑ′)) . (57)

Notice that there exists various different rotations which perform this operation. Here, we just
select one. Using the definitions (50), (56) and (57), it is not very difficult to show that:

R(ŷ,−ϑ)R(ẑ,−ϕ)~a = ẑ, R(ẑ, ϕ′)R(ŷ, ϑ′)ẑ = ~b and R(ŷ, ϑ′)R(ŷ,−ϑ) = R(ŷ, ϑ′ − ϑ).

As a consequence of this results, we may conclude that a possible rotation which transforms ~a
(56) into ~b (57), is given by:

R(ϕ′, ϑ′ − ϑ, ϕ) = R(ẑ, ϕ′)R(ŷ, ϑ′ − ϑ)R(ẑ,−ϕ). (58)

This parametrization of an arbitrary rotation in three dimensions is due to Euler. The three
independent angles ϕ′, ϑ′ − ϑ and ϕ are called the Euler angles.
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The generators.

A second parametrization involves the generators of rotations in three dimensions, as are called
the following three matrices which result from the three basic rotations defined in (50):

A1 =
d

dα
R(x̂, α)

∣

∣

∣

∣

∣

α = 0
=







0 0 0
0 0 −1
0 1 0





 , A2 =
d

dϑ
R(ŷ, ϑ)

∣

∣

∣

∣

∣

ϑ = 0
=







0 0 1
0 0 0

−1 0 0







and A3 =
d

dϕ
R(ẑ, ϕ)

∣

∣

∣

∣

∣

ϕ = 0
=







0 −1 0
1 0 0
0 0 0





 . (59)

In terms of the Levi-Civita tensor, defined in formula (53), we can express the matrix repre-
sentation (59) for the generators of SO(3), by:

(Ai)jk = −ǫijk. (60)

The introduction of the Levi-Civita tensor is very useful for the various derivations in the
following, since it allows a compact way of formulating matrix multiplications, as we will see.
However, one more property of this tensor should be given here, i.e. the contraction of one index
in the product of two Levi-Civita tensors:

ǫijkǫilm = ǫ
1jkǫ1lm + ǫ

2jkǫ2lm + ǫ
3jkǫ3lm

= δjlδkm − δjmδkl. (61)

Equiped with this knowledge, let us determine the commutator of two generators (59), using
the above properties (54), (55) and (61). First we concentrate on one matrix element (60) of the
commutator:

{[Ai, Aj ]}kl = (AiAj)kl − (AjAi)kl = (Ai)km(Aj)ml − (Aj)km(Ai)ml

= ǫikmǫjml − ǫjkmǫiml = ǫmikǫmlj − ǫmjkǫmli

= δilδkj − δijδkl − (δjlδki − δjiδkl) = δilδkj − δjlδki

= ǫmijǫmlk = −ǫijmǫmkl = ǫijm(Am)kl = (ǫijmAm)kl.

So, for the commutator of the generators (59) we find:

[Ai, Aj ] = ǫijmAm. (62)
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The rotation axis and angle.

In order to determine a second parametrization of a rotation in three dimensions, we define an
arbitrary vector ~n by:

~n = (n1, n2, n3), (63)

as well as its ”innerproduct” with the three generators (59), given by the expression:

~n · ~A = niAi = n1A1 + n2A2 + n3A3. (64)

In the following we need the higher order powers of this ”innerproduct”. Actually, it is sufficient
to determine the third power of (64), i.e.:

(~n · ~A)3 = (niAi)(njAj)(nkAk) = ninjnkAiAjAk.

We proceed by determining one matrix element of the resulting matrix. Using the above property
(61) of the Levi-Civita tensor, we find:

{(~n · ~A)3}ab = ninjnk{AiAjAk}ab = ninjnk(Ai)ac(Aj)cd(Ak)db

= −ninjnkǫiacǫjcdǫkdb = −ninjnk{δidδaj − δijδad}ǫkdb

= −ndnankǫkdb + n2nkǫkab = 0− n2nk(Ak)ab = {−n2~n · ~A}ab.

The zero in the forelast step of the above derivation, comes from the deliberation that using
the antisymmetry property (55) of the Levi-Civita tensor, we have the following result for the
contraction of two indices with a symmetric expression:

ǫijknjnk = −ǫikjnjnk = −ǫikjnknj = −ǫijknjnk, (65)

where in the last step we used the fact that contracted indices are dummy and can consequently
be represented by any symbol.

So, we have obtained for the third power of the ”innerproduct” (64) the following:

(~n · ~A)3 = −n2~n · ~A. (66)

Using this relation repeatedly for the higher order powers of ~n · ~A, we may also determine its
exponential, i.e.

exp{~n · ~A} = 1+ ~n · ~A+
1

2!
(~n · ~A)2 + 1

3!
(~n · ~A)3 + 1

4!
(~n · ~A)4 + · · ·

= 1+ ~n · ~A+
1

2!
(~n · ~A)2 + 1

3!
(−n2~n · ~A) + 1

4!
(−n2(~n · ~A)2) + · · ·

= 1+ {1− n2

3!
+

n4

5!
− n6

7!
+ · · ·}(~n · ~A) +
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+ { 1
2!

− n2

4!
+

n4

6!
− n6

8!
+ · · ·}(~n · ~A)2

= 1+ {n− n3

3!
+

n5

5!
− n7

7!
+ · · ·}(n̂ · ~A) +

+ {n
2

2!
− n4

4!
+

n6

6!
− n8

8!
+ · · ·}(n̂ · ~A)2.

We recognize here the Taylor expansions for the cosine and sine functions. So, substituting
these goniometric functions for their expansions, we obtain the following result:

exp{~n · ~A} = 1+ sin(n)(n̂ · ~A) + (1− cos(n))(n̂ · ~A)2. (67)

Next, we will show that this exponential operator leaves the vector ~n invariant. For that purpose
we proof, using formula (65), the following:

{(~n · ~A)~n}i = (~n · ~A)ijnj = (nkAk)ijnj = nk(Ak)ijnj = −nkǫkijnj = 0,

or equivalently:

(~n · ~A)~n = 0. (68)

Consequently, the exponential operator (67) acting at the vector ~n, gives the following result:

exp{~n · ~A}~n =
[

1+ ~n · ~A + · · ·
]

~n = 1~n = ~n (69)

So, the exponential operator (67) leaves the vector ~n invariant and of course also the vectors a~n,
where a represents an arbitrary real constant. Consequently, the axis through the vector ~n is
invariant, which implies that it is the rotation axis when the exponential operator represents a
rotation, i.e. when this operator represents an unimodular, orthogonal transformation. Now, the
matrix ~n · ~A of formula (64) is explicitly given by:

~n · ~A =







0 −n3 n2

n3 0 −n1

−n2 n1 0





 , (70)

which clearly is a traceless and anti-symmetric matrix. So we are lead to the conclusion that
exp{~n · ~A} is orthogonal and unimodular and thus represents a rotation.

In order to study the angle of rotation of the transformation (67), we introduce a pair of vectors
~v and ~w in the plane perpendicular to the rotation axis ~n:

~v =







n2 − n3

n3 − n1

n1 − n2





 and ~w = n̂× ~v = (n1 + n2 + n3)n̂− n







1
1
1





 , (71)

where n is defined by n =
√

n2
1 + n2

2 + n2
3.

The vectors ~v, ~w and ~n form an orthogonal set in three dimensions. Moreover, are the moduli
of ~v and ~w equal.

Using formula (70), one finds that under the matrix n̂ · ~A the vectors ~v and ~w transform
according to:
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(n̂ · ~A)~v = ~w and (n̂ · ~A)~w = −~v .

So, for the rotation exp(~n · ~A) of formula (67) one obtains for the vectors ~v and ~w the following
transformations:

~v ′ = exp(~n · ~A)~v = ~v + sin(n)~w + (1− cos(n))(−~v) = ~v cos(n) + ~w sin(n), and

~w ′ = exp(~n · ~A)~w = ~w + sin(n)(−~v) + (1− cos(n))(−~w) = −~v sin(n) + ~w cos(n).

The vectors ~v and ~w are rotated over an angle n in to the resulting vectors ~v ′ and ~w ′. This
rotation is moreover in the positive sense with respect to the direction ~n of the rotation axis,
because of the choice (71) for ~w.

Notice that the case n1 = n2 = n3, which is not covered by the choice (71), has to be studied
separately. This is left as an exercise for the reader.

Concludingly, we may state that we found a second parametrization of a rotation around the
origin in three dimensions, i.e.:

R(n1, n2, n3) = exp{~n · ~A}, (72)

where the rotation angle is determined by:

n =
√

n2
1 + n2

2 + n2
3,

and where the rotation axis is indicated by the direction of ~n.
The vector ~n can take any direction and its modulus can take any value. Consequently, exp(~n· ~A)

may represent any rotation and so all possible unimodular, orthogonal 3 × 3 matrices can be
obtained by formula (67) once the appropriate vectors ~n are selected.
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