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RELATIVIDADE GERAL 2011-2012

Considere treés referenciais A, B e C, cujas coordenadas sao dadas por respectivamente

+A) +(B) +H©)
ng) ng) xg@
ng) ’ ng) ¢ x;C)
ng) ng) ng)

O referencial A estd em movimento relativamente ao referencial B com velocidade con-
stante 548) | enquanto o referencial B estd em movimento relativamente ao referencial C
com velocidade constante 5(B¢).

A transformagao entre as coordenadas dos referenciais A e B é dado pelo ” boost” A(AB):

+B) +A)
ng) ng)
— A(AB)
ng) ng)
x;(;,B) ng)
AAB)°, A(AB)®, A(AB)°, A(AB), \ [ tYY
AAB)', A(AB)Y, AAB), AAB)?, || oY
= (1)
A(AB)?, A(AB)’; AMAB)*, A(AB)% || oY
AAB)Y, A(AB)*; MAB)’, A(AB)*s ) \ 2V

onde
1

V1 — fAB) . gan)
A(AB)’; = A(AB)' = ’YAB@(AB)

(AB) H(AB)
BB,

A(AB)OO = YAB —

e A(AB) i 52‘j + W(’YAB — 1) ,

para 1,5 =1,2,3.

A transformacao A(BC) entre as coordenadas dos referenciais B e C' obtem-se pela sub-
stituigao de A por B e B por C na Equagao (1).

Demonstre A(BC)A(AB) = A(AC)R, onde A(AC) represente um Lorentz boost e R uma

rotacao espacial.



Solutions

Exercicio 1

For a Lorentz boost in any direction, given by ﬁ one has to remember that the space components
which are perpendicular to the boost, do not suffer any contraction. Hence, when we decompose
a three-dimensional vector 7 into its parallel and perpendicular to B components, by (6 6] / B)

P=(p-7)B+T
then the Lorentz boost can be written by (v = 1/y/1 — ?)
t = y{t+8(8-7)}

and 7' = 7{(

>
=
N—
+
ey
~
—
=
+
=

= A{(B-7)+Bthp+i—(B-7)B
Next, we elaborate on the expressions
t = At+yf-7

and 7' = yft+y(B-F)B+7T—(B7)5

which in index notation reads

t' = yt+yBi;

BiB;
and 1z, = St + {@j +(y—-1) 2] T,
s
In order to perform the calculus of the product of the two boosts, we will start by simplifying
the matrix (1). For that we define

b
B=1 b : (2)
Bs
With definition (2) we have
o ap 00 bi B2 Bs afr afs aifs
af’ = | a ( pr B2 Ps ) = a» 00 0 0 0 [=] b ab apbs
s as 0 0 0 0 0 asfi azfe asfs

(3)



Moreover,

B
a8 = ( ap ap Qg ) By | =aufi+afot+asfs=a-F . (4)
Bs
The product aB” (3) has the following property
a1 aqfy a1fs o1 o
(aﬁT) o= | afi afs asfs oy | = (B101 + Paoa + P303) | as | = ( TO') a . (5)
asb azfy azfs o3 as

The product 87 (4) has the well-known property
Blo=p.=5-=0"8 . (6)

Moreover, property (5) follows from the fact that 87 o is a scalar (6) and the associativity property
of matrix multiplication:

(aﬁT) o=« (BTU) = <BTU) a
Furthermore, we define
1 00

001

Using the above definitions and 2% = 4% — 1, we may write

Aty AL, A bibr BBz PiBs . )
v—1 BB v
A% A%, AN =T+ ﬁ Bofi Bafa PofBs | =1+ (y—1) @ =1+ ?5[{[,
' Y
A% A, A Bsf1 Bsf2 Bafs
( A% A% A03 ) :75T ;
A%,
A | =P
A%,
Putting things together, we find
A% A% A, AY,
T
NEECENECEN N 7 VA .
N A2 A2, A2 A2 N ﬁ I+ 72 5ﬁT
0 1 2 3 v 71

A3, A3 A3, A3,



1. A(BC)A(AB)

Next, we devote ourselves to the calculus of A(BC)A(AB). We write

A(BC)A(AB) =
VBC v8e Bhe VAB Yap Bhp
oo Bpe 14 T, gt as Bap T+ -8 g gt
BC Ppc ’Y 1PBcPBC AB Pap ’Y T 1PaBPas
’7
YecYaB + V8cYABBEcBAs VBCYABBAE + VBCBhC + VBC ) Ai 15305@@13
YBcYABBpc + YABB AT Ve YaBBrcBas+
B %290 T %%;C T %243 T
o+ 17ABBBCBBCBAB +1 + o + 1530530 + mﬁAB/ﬁAB+
2 2
7Y Y
fYBCBi 1,7ABA_B;_ 1/BBCBECBAB/6£B
From formula (8) we read
(8a)  [A(BC)AAB))’, = vBcvas + vBcVaBBEBAs
AB
(8b)  [AMBC)AAB))’; = pcvasBhs +v8cBhe + ’YBCiBgCBABBZ;B
VAB
: %290
(8c) [A(BC)A(AB)|"y, = 7BcvaBBpc + V748Bas + N 17ABBBC@£CBAB
TYBC
) 7?30
(8d) [A(BC)A(AB)]Z]‘ = I+'7/BC'7ABBBC/6£B + 530520 +
Ypc + 1
2 2
YBC YAB
BasBhs + BrcBhcBasBis
Ya +1 YBc + 1vap +1
9 T
’VAB YBC YBcYABBBcB AR
=1+ 5A35AB 7530@1@0 + YBCYAB {1 + } ﬁBCﬁiB
Yap +1 vBc + 1 (vBc +1) (yap + 1)




2. Bac

Before we continue, we first must translate 3,5 into 3 4,. For that it is necessary to know how
velocities transform from B to C. Using Eq. (7), we deduce

( 4(©) ) VBC Ve Bhe 4(B)
z(© Yc Bpe I+ BC ﬁBGﬁBC z

YBC

vBct®) + vpc Bped P

2
Ve Bpct® + T+ 5c BecBhe p TP
Yec +1

From the result (9) we find
d t©) dz®)

=vBc + VBC 6§c =7vBc + VBC 53077(3
dt(B) dt(B)
and
d i© Yhe diB Vi
=YBc Bpc + (I + scBhe =9Bc Bpe + 1+ /BBCBBC ot?
dtB) vBc +1 dtB) YBc + 1

Hence, the transformation which we are looking for, results in

2
. i L
dz©  vpc Bpe + {I + 8¢ 5BCBBC} (B)

dz©  dtB 4z (B Tt (10)
_ _ _ , 10
C —
#e @O g’ dt 9 vBC + VBC BpeT®
dt(B)

In particular, for 3 ,., which is the velocity of reference frame A with respect to reference frame
C, we obtain, in terms of the velocity 3,5 of reference frame A with respect to reference frame
B, the following expression

vBc Bpe + {I + YaC i BBC/BBC} Bap

ﬁAC = .
vBc + vBC BpcBas

(vBc +1) Bap + {'YBC (vBc +1) +7Be (5@05@) } Bsc

vBe (VB + 1) {1 + ﬁzTacﬁAB}

Notice that, in the above, we made use of (see Eq. 5)
(530520) Bas = Brc (/BECBAB) = (/BECBAB) Bso - (12)

Notice, furthermore, (see Eq. 6) that ﬁgcﬁ e and Bgcﬁ ap are scalars.



3. vac

Next, we need to determine y4¢ in terms of vgo, Bpc and B45.
Let us start with (see Eq. 4),

‘5A0’2 = ﬁzcﬁAc =

(v8c +1) Bap + {180 (vsc + 1) + 93¢ (B5cBan) } Bro

Ve (Ve + 1) {1 + ﬁJ_TacﬁAB}

(vBc +1) Bap + {'YBC (YBe +1) + VB¢ (5205,43) } Brc

(13)
VB (YBC +1) {1 + 5%05@}
The numerator of the product (13) has 4 terms. We collect them one by one:
(vse + 1) Bhp (vso +1) Bap = (vee + 1) BhpBas (14)
(v8c +1) Bp {WBC (YBe + 1) +vhe (/BECBAB) } Bpc =
= (yBc + 1) {’YBC (vBe +1) +75c (/BECBAB) } BasBsc
= (ysc + 1) {18c (e + 1) + 3o (BhoBag) } BhcBas (15)
{VBC (YBe +1) + 75 (5205&3) } Bhe (vBe + 1) Bap =
= (vBc +1) {WBC (Yo + 1) + ¢ (BECBAB)}BECBAB ; (16)
2 T 2T
{’YBC (vBe +1) + B¢ (5BcﬁAB)} BscBse =
= {(VBC +1) +75c (ﬁzTacﬁAB) }2 VcBEcBsc
= {(VBC +1)+ 80 (ﬁf_TacﬁAB) }2 (%%30 - 1) : (17)

The sum of the 4 terms of the numerator of the product (13), Eqgs. (14-17), gives, also using the
fact that 4232 =~% — 1

numerator = (ypc + 1) [(’VBC +1) ﬁzBﬁAB +

+2 {’VBC (vBe + 1) + V5 (ﬁgcﬁAB) } BhcBap +

+ (v80 — 1) {(vpc + 1) + 780 (BEC/BAB)}Q]

6



= (vpc +1) [(WBC +1) BApBas + (vae +1) (%290 - 1)

+2v5c (Yo + 1) BpeBas + ke (Yo + 1) (BECBAB)Q]

= (ypc +1)?

2
BanBap + (7%;0 - 1) +295cBpcBas + Voo (5205,43) ]
The denominator of the product (13) gives

2
denominator = 4. (Ypc + 1)2 (1 + BECBAB)

Hence, putting things together, also using 72 = 1 — 873, we have for Eq. (13)

L o2 T numerator
Yac ’6 AC’ BacBac denominator

2
BasBas + 27he (6£CﬁAB) + 7B (5205&;) +Yhe — 1

Vhe (1 + ﬁJ_TacﬁAB)2

11— 5£BBAB 1

VB (1 + 520[%13)2 VBcVap (1 + BECBAB)Q

Hence,
YAC = YBCYAB (1 + 6£CﬁAB) :

which is exactly the [A(BC)A(AB)]%, term of expression (8a).

(18)

(19)

(20)

(21)



4. vacBac
Next, using Egs. (11) and (21), we determine

VACBAC =

(vBc +1) Bap + {’VBC (YBe +1) +73c (6gCﬁAB) } Brc

= ypcvas (1+ BhoBas)
Vs (vBe + 1) {1 + ﬁgcﬁAB}

’Y%;C”YAB

= YaBBap + {’VBC’YAB + ﬁJ_TacﬁAB} Bsc

YBc + 1

’YBC(’YAC - ’YBC'YAB)
= YaBBap + {VBCYAB + BC
Yec +1

vec(Yac + VaB)
= vaBBap + BC >
vYpo + 1

which are exactly the [A(BC)A(AB)]?, terms of expression (8¢c).

(22)



5. YacBio

One expects now that the [A(BC)A(AB)]% terms are equal to y408% .. However, as one
can easily see from (8b) and (8c), that is not the case. The reason is that a general Lorentz
transformation is the combination of a Lorentz boost and a rotation R:

YAc Yac Bhe 10
A(BC)A(AB) = ; Vo . ( . )
_'_
Yac Bac ~ac + 15AcﬁAc
Tac vac BhcR

(23)

2
R Yac T
Yac Bac + o+ 1 BacBac R

It leaves the [A(BC)A(AB)|%, and [A(BC)A(AB)]", nicely in peace, exactly as we found. But,
the [A(BC)A(AB)]°; and [A(BC)A(AB)]*; terms are affected.

2



6. R
We deduce from Eq. (23) for R, also using expressions (8), (8a-d)

10
( ) — A(AC)""A(BO)A(AB) =
0 R

-1
YAC YAc 5£c

Yac Bac I+ 5A05Ac

7+1

Yap + 1
YBcYABBBc + YaBB AR+ I+ WBCWABBBCBZBJF
7}290 T ’YBC ’7,243 T
+ + +
B+ 1’VABﬁBcﬁBCﬁAB vBo ﬁBCﬁBC ~ap + lﬁABﬁAB

2 2
TBC YAB T T
e + 17ap - I/BBCBBC/@AB/BAB

Now, the inverse of a boost with velocity 3 is the same expression, but with 3 replaced by

Consequently, also using relation (21),

10
( ) — A(AC)"'A(BO)A(AB) =

0 R
YAC —YAC 53’;0
- —Yac Bac I+ ’y + 15A05Ac
YAC YBcBpc + L (Jj;i?BC)BAB

2
’YA VYBC
YacBac I+ B BAB/BAB +—E BpcBhct
Yap + 1 Yo + 1

1+ 7vac +7vBc +VaB
+YBCYAB ﬁBCﬁZ;B
(vBc +1) (yap +1)

-2
YeeVaB + VBcYABBEcBAs VBcYABBAE + VBcBhe + YBo—25—=BLBAsBhs

(24)

-8.

(25)

We may start by verifying the (0,0) element of the rotation matrix, which should give 1. We

obtain from the matrix product the following result:

[A(AC)AA(BC)A(AB)]OO = %240 - ’VzlcﬁicﬁAc =1,

which is what we expected.

10

(26)



The (0,7) element of the matrix product (25) must vanish. We find

2
Yac

[A(AC)'A(BC)MAB)]"y = —vacBac + ([ + ﬂACﬁZ;C) YacBac = (27)

Yac + 1

2
Yac

2
Yac — 1
5£CﬁAc) = —YacBac (_'YAC + 1+ ) =0

= —YacBac (—%40 +1+
Yac +1

Yac + 1
Also the (0,7) element of the matrix product (25) must vanish:

Yas(Vac + Vpc)
ACAC) " A(BO)MAB))’, = ac (vscﬁgc b 63;3) +

B T g B T ¢ T T
YacBac | I+ BasBap + BrcBrc + VBcVaB BpcBag

Yap + 1 Yo + 1 (vBe +1) (vas +1)

i v L +7vac +7vBc +7aB )

(28)

Before we determine the (0,7) element of the matrix product (25), we perform the following
calculus, making use of expressions (21) for yac and (22) for yac B 4¢-

vee(Yac + YaB)

Yac BheBap = (’VABﬂZ;B + ﬂJ_Tac) Bap =

Ypc + 1

= vasBhapBas + BpcBap=—|rvap—1+

vec(Vac + VaB) T 1 ( ) (vac — vBcyaB)(Vac + 'YAB))
YBc + 1 YAB

Yec +1

1 ((”YAC + vap)?

— YACYAB — 1) (29)
Yo + 1

YAB

and

vec(Yac + VaB)

Yac BacBpo = (VABﬁZ;B + ﬁgc) Bpc =

Yec +1

veo(Yac + YaB) 1
= Y4B 5Bpc + BhcBpc = — (“YAC — YBCYAB T
vBc + 1 YBC

(VBe — D(vac + ’YAB))
Yo + 1

VAB
=Yac — — - (30)
YBC

With the use of Egs. (22), (29) and (30), we obtain for the (0,4) element of the matrix product
(25) the following.

Yacyas(Yac + vBo)
Yap + 1

[A(AC) ' A(BCYMAB)°; = vacvBeBhe + Bl — VacBhc+

11



YacYan . . YACYBe - - L +vac +vBc + Va8 . .
- AC ABBAB - 7BACBBCBBC — YACYBCYAB 5,405305,43
Yap +1 Yeo +1 (vBe +1) (vas +1)
. Yacyas(Yac + vBc) - - vec(Vac + VaB) -
= WACWBCBBC + Yap + 1 Bap — YaBBap — BCc T
vYpe + 1
Yis 1 (vac + vaB)? - Yoo YAB -
- —Yacyas — 1| Bap — Yac — — | Bpe +
YaB + 17aB vBc +1 Ve + 1 YBC

1+ vac +7vBc +74B YAB -
—YBCYAB Yac — — | Bas

(vBe + 1) (yap +1) YBC

vec(Yac + VaB) %%;c YAB -
= |YAcYBC — - vac = — || Bec +
vYBc + 1 vYBc + 1 YBC

Yacyas(Yac + VBc) Yig 1 ((’VAC + v4B)? 1)
+ — YAB — — YACYAB — +
1
Vap + YaB +17vaB YBc + 1
1 +vac +7vBc + V4B VAB .
—YBCYAB Yac — —— 5,43
(vBe + 1) (yap +1) VBC
YBC T
= [Yac(vBe + 1) = Yac — YaB — (Yacyse — VaB)] Bre +
Yec +1
YAB 9
+ {%40(%40 +v8c)(vBe + 1) — (vBe + 1) (Ya + 1) — (yac + vaB)® +

(vBc + 1) (vap +1)

+(vacvas + 1)(vBe + 1) — (1 + vac + vc + vaB) (VacyBe — VAB)} Bhis

=0 , (31)

exactly as we expected.
So, we are then ready to tackle R = [A(AC)""A(BC)A(AB)]’;. But, first we make an important
observation, namely, from the fact that [A(AC)~'A(BC)A(AB)|° vanishes, we may deduce

. Yis . Yae . 1+ vac +vBc + V4B .
YacBac | 1+ BapBag + BpcBpc + VBCVAB BpcBag
Yap + 1 VB +1 (v + 1) (yap + 1)
- vas(Yac + VBc) T
= 7ac | 7BcBpe + g b1 Bap | (32)

It is relation (32) which reduces by factors the length of the formulas. Without it, one would
obtain lengthy expressions which are difficult to manage and may lead to several possibilities of
mistakes in signs and coefficients.

12



Using Egs. (22), (25) and (32), we arrive at

- YaB(Yac + VBc) .
R = —yacBac | 1BcBpe + ~ap F1 Bap | +

’szc
+ ([ + ﬂACﬁZ;C)

Yac + 1
Vi . Yhe . 1 +vac +7vBc +VaB .
I+ BasBap + ———BpcBsc + VBcYAB BpcBag
Yap +1 vBc + 1 (vBc +1) (yap +1)

We split the product of the second term in two terms. One term equals I times the expression

in the last line and the other fYAj_ 1

AC
handled with formula (32). We obtain then

B AC'YACBZ;C times that expression. The latter term can be

- YaB(vac + VBc) -
R = —v4cBac | YBcBpe + ap T 1 Bap | +

Vi . Yhe . 1+ 7vac +7vBc +VaB .
+1 + BasBap + ———BpcBpc + VBcYAB BpcBas +
Yap +1 Yo +1 (vBe +1) (yap + 1)
Yac - YaB(vac + vBc) .
+ Bac | vBcBsc + ~ap F1 Bap
Yac + 1 AB

Yac _ __Tac
Yac + 1 Yac +1

Next, we add the first term and the last term, using —yac +

YAC - YaB(Yac + VBc) -
R=1- Bac | vBcBpe + g P 1 Bap | +
Yac + 1
Vag . o . L'+ ~vac +vBc + Va8 .
+ BapBap + ——BpcPrc + VBcVaB BpcBas
YaB +1 Yo + 1 (vBe +1) (yas + 1)
Here, we substitute in the second term, expression (22) for vac3 ¢
1 YBc(Vac + vaB) o, AB (vac +7vBc) .
R=1- VABBap + Bro | \v8cBpe + —— 1 Bap | +
vac + 1 Yo +1
Vag . Be . 1 +vyac +vBc + V4B .
+ BapBap + ———BpcPrc + VBCcVAB BrcBas
YaB +1 Ve + 1 (vse +1) (yas +1)
Subsequently, we elaborate the second term.
YBCYAB - Yis(Yac + vBc) -
R=1———B1pBsc — BapBapt
Yac +1 (vac + 1)(vap + 1)

13



%290(%40 + vaB) YeeYaB(Yac + Vo) (Vac + YaB)

- scBhe — BcBhp +
(yac + 1)(vBe + 1) (vac + 1)(vBe + 1) (yap + 1)
VB - Be . 1+ v4c +vBc + V4B .
+ BapBaip + ——BpcBsc +VBCVAB BpcBag
Yap +1 Yo + 1 (vBe + 1) (yap +1)

In the next step, we join terms of the same matrices B,5845, BasBros BrcBip and BpcBhe-

YBCYAB . Yis(vac + vBc) VaiB -
R=1- BapBrc+ 9 — + BasBapt
Yac +1 (Vac+ 1)(yap+1)  ~vap+1

Ve (vac +Van) Vhe .
+9— + BpcBrc +
(vac + 1) (ype+1) e +1

veeYaB(Vac + Vo) (Yac + Ya) 14+ vac +vBc + 4B .
- + YBCcYAB BpcBag
(vac + 1)(vBe + 1) (yaB + 1) (vBc +1) (yap +1)

and elaborate on the coefficients.

YBCYAB . Yap(vBc — 1) .
R=1- BasBsc — BapBapt
Yac +1 (Yac +1)(vaB +1)
Yoe(vap — 1) + 1BcYaB(1 42740 +7BC + YaB — VBCYVAB) .
— BpcBpe + BpcBag
(vac +1)(vo + 1) (yac +1)(vBe + 1)(yaB + 1)

14



7. The rotation

Now, we study the details of the rotation. Thereto, we determine the coefficients of 3, Bﬁgc —

BpcBhs and BupBLe + BpceBhs, and join the remaining two, 8,584 5 and Bp-Bro, With a
common denominator.

veeYAB(1 +vac + vBe + VaB) - -
R=1- (5,43530 - BBCBAB) +
(vac + 1)(vBo + 1)(yaB + 1)

vBcYAB(YAC — VBCYAB) . .
+ (5,43530 + BBC/BAB) +
(vac + 1) (vBe + 1) (va + 1)

Yas(Vhe — 1)ﬁABﬁ£B +vc(VaB — 1)ﬁBcﬁJ_Tac
(vac + 1)(vBo + 1) (yaB + 1)

Finally, we substitute the relations VBCWABBE(JBAB = Yac —VYBcYaB (see Eq. 21), 7%;0520[330 =
Yhe — 1 and ’Y,%BﬁzBﬁAB =i —1

veeYaB(l 4+ Yac + vBo + VaB) . .
R=1- (BAB/BBC - /BBCBAB) +
(vac + 1)(vBe + 1)(yas + 1)

%%;C%%B T T T T
+ {ﬁABﬁBCﬁABﬁBC + BpcBpcBaBap +
(Yac + 1)(vBe +1)(yap +1)

~BasBhoBrcBhs — BeoBhsBasBhc

and write the result in a more compact form.

YecYaB(1+ Yac + YBc + VaB) - T
R=1- (BABBBC - /BBCBAB) +
(vac + D(vse +1)(yap + 1)

72 72
" e (BasBhe — BucBhs) (33)
(vac + 1)(vso + 1)(ya + 1)

In order to understand that the result (33) represents a rotation, we write the explicit matrix
form for B 458%- — BrcBhs.
ABPBC BCcPAB

ﬁABﬁgC - ﬁBCﬁZ;B =

AB BC AB BC AB BC BC AB BC AB BC AB
AB BC AB BC AB BC BC AB BC AB BC AB
AB BC AB BC AB BC BC AB BC AB BC AB

15



_ (5£BC)IB§AB ﬁ(BcBAB))
(ﬂ(BCB B) ﬁ§BC)ﬁ§AB))

C) (A C) H(A
(8708 — 5" B)

0
(5 (BC) IB(AB ﬁ(Bc (AB))

( 8 (BC) IB(AB §BC) éAB))

BC) 4(AB BC) 4(AB
- (878 - 78)

0

0 - {EBC X EAB}g [EBC X gABL
= [EBC X EABL 0 - [BBC X EABL = (EBC X gAB) A (34)
- [ch X EAB]Q [530 X gABL 0
where the generators, A;, As and As, of rotations are given by
d 00 O d 0 01
Al = y —R(z, ) =00 -1 |, A= @R( 19)‘ = 000
a a=0 01 0 =0 -1 0 0
d 0 -1 0
and Az = d—R(?}, cp)‘ =11 00 : (35)
7 =0 \0 00
for
0 cos(1)
0 1 0

1 0
R(z,a) = ( 0 cos(a) —sin(a) ) . R(y,9) = (
0 sin(a)

cos(p) —sin(p) 0
and R(z,p) = | sin(p) cos(p)
0 0

cos(a)

0 sin(¥) )

—sin(d) 0 cos(¥)

) . (36)

For a rotation R (7i ) with rotation axis n and rotation angle n, one has the following expression

(see Eq. 67)

R (i) = exp{ii- A} = [ +sin(n)(n - A) +

—,

Hence, from Eq. (34), we find that the rotation axis of rotation (33) is given by

Bec X Bap

n =

‘EBC X EAB’ -

BO) o(AB
o0
1 (BC) H(AB)
5 o 3 51 -
‘530 XﬁAB‘
(BC) H(AB)
1 ﬁZ -

(1 —cos(n))(n - A)? (37)
(BC) (AB)
L (38)
(BC) g(AB)

Comparison of Eq. (33) with the formula given in Eq. (37), gives for the rotation angle n the

following relations:

veeYas(l + vac + vBo + YaB) |

sin(n) = —

(Vac + 1) (vse + 1)(yas + 1)

16

’530 X 5AB‘ )

(39)



and

7%307313 ‘2 (40)

1 —cos(n) = ]ﬁgc X Ban
(vac + 1)(vBe + 1)(vap + 1)

In order to verify whether the relations (39) and (40) satisfy the condition sin®*(n)+cos?(n) = 1,
we need to determine ‘530 X BAB‘.

‘BBC X 5AB’2 = (gAB : gAB) (BBC : EBC) - (BAB : gBC)Q

2
— (BhoBas) (hchnc) - (Fisbsc)’ = (Fhobas) (Fhehnc) - (- 1)

YBCYAB

1
= ——{(Vis — DB — 1) = (rac —v8c748)*} - (41)
YABVBC

One obtains then for the rotation angle

(1 +75ac +7v8c +7a48)* {(vas — D)(Vae — 1) — (vac — vBcyaB)*}
sin?(n) = : (42)
(vac + 1)*(vBe + 1)*(vap + 1)°

and
{(7313 - 1)(%290 - 1) - (WAC - ’YBC’YAB)Q}
1 —cos(n) = . (43)

(vac + 1) (vBe +1)(vap + 1)

Hence,

() =1 {(’7313 - 1)(%290 —1) = (yac — ’YBC’YAB)Z} B

(vac + 1) (vse + 1)(yas + 1)

(vac + 1)(vBe + 1)(va + 1) — (vis — 1)(vBe — 1) + (Yac — vBcyaB)?

B (a0 + D) (ve + 1) (a5 + 1)

Yac(l +vac + Ve + Yas — YBcYaB) + VBc(VBO + 1) + Vap(YaB + 1) (44
(Yac + 1) (vBe +1)(yap +1)

Here, we perform some of the arithmetic for sin® + cos? in MAXIMA:

om2: (gbc*gbc-1)*(gab*gab-1)-(gac-gbc*gab)*(gac-gbc*gab) ;
den: (gac+1)*(gbc+1l)*(gab+1);

s2: (1l+gac+gbc+gab)*(l+gac+gbc+gab)*om2;

c: den-om2;

p: c*xc+s2-denxden;

expand (p) ;

quit();
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which results in P = 0, hence proofs that sin? + cos? = 1.
The tangent of the rotation angle n is given by

, (1+7ac +7v8c +748)° {(Vap — D(vBe — 1) — (yac — vBcv4B)*}
tan®(n) = S (45)
{vac(I +vac +vBc + vaB — vBcYaB) + V8o (VBe + 1) + Yap(yas + 1)}

where, from Eq. (21) one has the relation of y4¢ with EBC and BAB, namely
YAC = YBCVAB (1 + BBC : gAB ) and  yac — VYBOYAB = VBCVAB EBC : gAB . (46)

Hence, the rotation axis and the rotation angle can be fully expressed in terms of 5 o and B’ AB-
For further studies of the rotation R, formulas (39) and (40) seem more transparant. After the
substitutions

Yac = vpcyap {1 + BpcBapcos(0)}  and IEBC X EAB’ = BpcPapsin(d) (47)

where 6 represents the angle between the two boosts EBC and 5 4B, one obtains for formulas (39)
and (40) the following expressions.

veeYaB(l 4+ vBevap {1 + BecBapcos(0)} + veo + Yap)
sin(n) = — BpcBapsin(@) ,  (48)
(vBeya {1+ BecBapcos(0)} + 1)(vpe + 1)(vap + 1)

and

7?307313 .
1 — cos(n) = Brobapsin®(0) . (49)
(vBevap {1 + BecBapcos(0)} + 1) (ve + 1)(yas + 1)

Notice from Eqs. (48) and (49) that when the boosts ¢ and 45 are parallel, sin(n) = 0 and
cos(n) = 1, hence, no rotation occurs.

Furthermore, when the boosts EBC and B’ 4p are perpendicular, sin(n) = 1 and cos(n) = 0, one

finds
YaB + VBC . YaBYBCcBaBBBC
cos(n) = ——— and sin(n) = —
L+ vaBvBC 1+ vaBvBC
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Rotations in three dimensions

The three rotations around the principal axes of the orthogonal coordinate system (x,y, z) are
given by:

1 0 0 cos(¥) 0 sin(v)
R(Z,a) = | 0 cos(a) —sin(er) |, R(y,9) = 0 1 0 :
0 sin(a) cos(a) —sin(d) 0 cos(V)
cos(p) —sin(p) 0
and R(Z,¢)=| sin(¢) cos(p) 0 |. (50)
0 0 1

Those matrices are unimodular (i.e. have unit determinant) and orthogonal.

As an example that rotations in general do not commute, let us take a rotation of 90° around
the z-axis and a rotation of 90° around the y-axis. It is, using the above definitions (50), easy to
show that:

R(%,90°)R(5,90°) # R(§,90°)R(%,90°) . (51)

An arbitrary rotation can be characterized in various different ways. One way is as follows: Let
é1, e and é3 represent the orthonormal basis vectors of the coordinate system and let u; = é4,
Uy = €9 and 1z = é3 be three vectors in three dimensions which before the rotation R are at the
positions of the three basis vectors. The images of the three vectors are after an active rotation
R given by:

i; = Ra; for i=1,2,3.

The rotation matrix for R at the above defined basis é; (i = 1,2, 3), consists then of the components
of those image vectors, i.e.

(@ (@)1 (d3h
R=| (d)2 (d3)y (d3)z | - (52)

(@)s ()3 (u3)s

A second way to characterize a rotation is by means of its rotation axis, which is the one-
dimensional subspace of the three dimensional space which remains invariant under the rotation,
and by its rotation angle.

In both cases are three free parameters involved: The direction of the rotation axis in the second
case, needs two parameters and the rotation angle gives the third. In the case of the rotation R
of formula (52) we have nine different matrix elements. Now, if é;, é; and é3 form a righthanded
set of unit vectors, i.e. €; X é; = €3, then consequently form the rotated vectors ), @, and % also
a righthanded orthonormal system, i.e. @4 = @} x u5. This leaves us with the six components of
w) and u4 as parameters. But there are three more conditions, || = |15 = 1 and o} - 45 = 0. So,
only three of the nine components of R are free.

The matrix R of formula (52) is unimodular and orthogonal. In order to proof those properties

of R, we first introduce, for now and for later use, the Levi-Civita tensor ¢, ik given by:
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+1 for ujk = 123, 312 and 231.
€k = —1 for 4jk = 132, 213 and 321. (53)
0 for all other combinations.

This tensor has the following properties:

(i) For symmetric permutations of the indices:

€iki = €kij = €ijk- (54)

(i) For antisymmetric permutations of indices:
€ikj = €jik = €kji = —Cijk- (55)
Now, using the definition of the Levi-Civita tensor and the fact that the rotated vectors w7,

u}, and w4y form a righthanded orthonormal system, we find for the determinant of the rotation
matrix R of formula (52) the following:

det(R) = e Ri1RjoRyg = ek (01)(1) (@),

= (0 x il g () = 1l - 1ly = 1

And for the transposed of the rotation matrix R we obtain moreover:
T T N =
<R R)Zj = <R >Z/{: Rk‘j = RkiRkj = (u;)k(ufj)k = 51]

Consequently, the rotation matrix R is unimodular and orthogonal.
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The Euler angles.

So, rotations in three dimensions are characterized by three parameters. Here we consider the
rotation which rotates a point a, defined by:

a = (sin(?) cos(p), sin(?) sin(p), cos(¥)) , (56)
to the position g, defined by

b = (sin(0)) cos(y), sin(¢) sin(¢'), cos(?')) . (57)

Notice that there exists various different rotations which perform this operation. Here, we just
select one. Using the definitions (50), (56) and (57), it is not very difficult to show that:

R(ga _ﬁ)R(éa _SO)J = 27 R(éa QO/)R(?)’ 19/)2 = g and R(ga ﬁl)R(lga _19) - R(ga 19/ - 19)

As a consequence of this results, we may conclude that a possible rotation which transforms @
(56) into b (57), is given by:

R(9017 v — 197 @) = R(’%7 @I)Rtgv v — 19>R(27 _()0) (58>

This parametrization of an arbitrary rotation in three dimensions is due to Euler. The three
independent angles ¢, ¥ — 1 and ¢ are called the Fuler angles.
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The generators.

A second parametrization involves the generators of rotations in three dimensions, as are called
the following three matrices which result from the three basic rotations defined in (50):

g 00 0 p 001
a=0 01 0 V=0 -1 00
d (0 -1 0)
and Agzd—R(é,cp)‘ =11 00]. (59)
¥ =0 0 00

In terms of the Levi-Civita tensor, defined in formula (53), we can express the matrix repre-
sentation (59) for the generators of SO(3), by:

(A jk = ~¢€ijk- (60)
The introduction of the Levi-Civita tensor is very useful for the various derivations in the
following, since it allows a compact way of formulating matrix multiplications, as we will see.

However, one more property of this tensor should be given here, i.e. the contraction of one index
in the product of two Levi-Civita tensors:

€ijkCilm = €ujk€im T €25kClm T €35k slm

= 0510km ~ OjmOkl- (61)
Equiped with this knowledge, let us determine the commutator of two generators (59), using

the above properties (54), (55) and (61). First we concentrate on one matrix element (60) of the
commutator:

{4 Al = (A48 — (A48 = (A em (A — (A km (A3
Cikm€iml — €jkmSml = Smik®milj — ¢mjkmli
= 010k — 050kt — (0510k; — 05i0k1) = 03105 — 010k;

= mijemik = ~CijmEmkl = €ijm(Am)g = (€jmAm) k-

So, for the commutator of the generators (59) we find:

[Ai’ A]] = Ezijm (62)
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The rotation axis and angle.

In order to determine a second parametrization of a rotation in three dimensions, we define an
arbitrary vector 7 by:

'ﬁ: = (nl,ng,ng), (63)

as well as its "innerproduct” with the three generators (59), given by the expression:

- /_f = n’lA’l = TL1A1 -+ n2A2 + TLgAg. (64)

In the following we need the higher order powers of this ”innerproduct”. Actually, it is sufficient
to determine the third power of (64), i.e.:

We proceed by determining one matrix element of the resulting matrix. Using the above property
(61) of the Levi-Civita tensor, we find:

(- D%y = ngnjnpdAiAj ALY gp = ningng(Apac(Af) ca(Ap)ap
= TN acC jedCkdb = ~ i %d0a5 — 0ijOad}€kdb

= —ngnani€rdp + ”ZHkEkab =0 - ”2”/<;<Ak)ab = {—n2ﬁ . ‘I}ab'

The zero in the forelast step of the above derivation, comes from the deliberation that using
the antisymmetry property (55) of the Levi-Civita tensor, we have the following result for the
contraction of two indices with a symmetric expression:

ewknjnk = —ezkjnjnk = —ezkjnknj = —eijknjnk, (65)
where in the last step we used the fact that contracted indices are dummy and can consequently

be represented by any symbol.
So, we have obtained for the third power of the ”innerproduct” (64) the following:

(- A)® = —n?7 - A. (66)

Using this relation repeatedly for the higher order powers of 7 - ff, we may also determine its
exponential, 7.e.

exp{ii- A} = 1+ﬁ~A+i(ﬁ-A)2+§(ﬁ. P+ gAY
T L S A T VI,
= 14 At 5 A+ 5 (=ni - A) + 5 (=071 A)7) +
n? n* nb o
= 1+ {l-gpto - @A)+
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1 n? n* nS -

= 2
+{§—J+a—§+}<nz4)
nd n® ' L
= 1+{n—3'+a—ﬁ+ Hn-A)+
2 4 6 8
o (e A

We recognize here the Taylor expansions for the cosine and sine functions. So, substituting
these goniometric functions for their expansions, we obtain the following result:

exp{ii- A} = 1 +sin(n)(f - A) + (1 — cos(n))(n - A)2. (67)

Next, we will show that this exponential operator leaves the vector 7 invariant. For that purpose
we proof, using formula (65), the following:

—, —,

{(ﬁ : A)ﬁ}z = (ﬁ . A)Zjnj = (nk,Ak,)Unj = nk(Ak,)Zjnj = —nkekijnj = 0,
or equivalently:

—,

(7 - A)it = 0. (68)

Consequently, the exponential operator (67) acting at the vector 7, gives the following result:

exp{ii- Ayi= [1+7- A+ |i=1li=7q (69)

So, the exponential operator (67) leaves the vector 7 invariant and of course also the vectors aii,
where a represents an arbitrary real constant. Consequently, the axis through the vector 7 is
invariant, which implies that it is the rotation axis when the exponential operator represents a
rotation, 7.e. when this operator represents an unimodular, orthogonal transformation. Now, the
matrix 7 - A of formula (64) is explicitly given by:

., 0 —nN3 o
n-A= N3 0 —ny y (70)
—TN9 nq 0

which clearly is a traceless and anti-symmetric matrix. So we are lead to the conclusion that
exp{7 - ff} is orthogonal and unimodular and thus represents a rotation.

In order to study the angle of rotation of the transformation (67), we introduce a pair of vectors
v and W in the plane perpendicular to the rotation axis n:

Ng — N3 1
v=1| ng—mny and W=nxv=(n+ng+nz)n—n| 1 , (71)
n1 — N9 1

where n is defined by n = /n? + n3 + n3.
The vectors v, w and 77 form an orthogonal set in three dimensions. Moreover, are the moduli
of v and w equal.

Using formula (70), one finds that under the matrix n - A the vectors ¥ and @ transform
according to:
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—, —,

(n-A)W=uw and (n-A)W=—0
So, for the rotation exp(i - A) of formula (67) one obtains for the vectors # and 1 the following
transformations:

—,

v =exp(n- AW = U+ sin(n)w+ (1 —cos(n))(—v) = vcos(n) + wsin(n), and

@' =exp(it- AV = @+ sin(n)(=7) + (1 — cos(n))(—w) = —Tsin(n) 4 @ cos(n).

The vectors ¥ and w are rotated over an angle n in to the resulting vectors v/ and w ’. This
rotation is moreover in the positive sense with respect to the direction 7 of the rotation axis,
because of the choice (71) for .

Notice that the case n; = ny = ng, which is not covered by the choice (71), has to be studied
separately. This is left as an exercise for the reader.

Concludingly, we may state that we found a second parametrization of a rotation around the
origin in three dimensions, i.e.:

R(nla na, n3) = exp{ﬁ ’ /_1»}7 (72)

where the rotation angle is determined by:

n = \/n%+n§+n§,

and where the rotation axis is indicated by the direction of 7.

The vector 77 can take any direction and its modulus can take any value. Consequently, exp(7 ff)
may represent any rotation and so all possible unimodular, orthogonal 3 x 3 matrices can be
obtained by formula (67) once the appropriate vectors 7 are selected.
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