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1. Numa das muitas experiências que foram mostradas nas aulas teóricas desta disciplina o
Prof. Walter Lewin aqueceu água dentro duma lata metálica. Posteriormente, quando
o vapor de água começou a sair da lata, ele fechou-a herméticamente com a água ainda
a ferver e deixou-a uns bons minutos a arrefecer.

a Descreva pormenorizadamente, utilizando um diagrama de fase, o que sucedeu durante
o processo de arrefecimento. Qual o objectivo desta experiência?

Numa outra experiência um nadador mostrou a diferença de flexibilidade de uma bola
plástica a profundidades diferentes dentro da água numa piscina.

b Qual o objectivo desta segunda experiência?

Numa terceira experiência um assistente mostrou o que se passava com uma pequena
quantidade de gelo seco (dióxido de carbono) dentro dum tubo plástico transparente e
herméticamente fechado.

c Descreva pormenorizademente, utilizando um diagrama de fase, o que sucedeu durante
o processo de aquecimento. Qual o objectivo desta última experiência?

2.
a Uma escada de 5.0 metros com peso desprezável está encostada a uma parede vertical,

sem atrito. A escada faz um ângulo de 60◦ com o chão horizontal. O coeficente de
atrito entre a escada e o chão é igual a 0.20.
Até que altura pode, uma pessoa de 80 kg, subir a escada sem que ela deslize?

b Uma part́ıcula pontual de massa 5.0 kg, que está ligada a um fio, realiza um movimento
circular com 2.0 metros de raio e uma velocidade de 1.0 m/s sobre uma mesa sem atrito.
O fio passa por um furo para baixo da mesa onde uma pessoa o segura. Descreva o que
se passa com o movimento da part́ıcula, deduzindo e analizando as fórmulas adequadas,
quando a pessoa reduz o raio do movimento circular para 50 cm.

3.
a Num tubo fechado com 1.36 metros de comprimento onde se produz um som

monocromático (som de uma só frequência) de 500 Hz são observados três nós. Deter-
mine a velocidade do som deduzindo e analizando as fórmulas necessárias.

b Considere duas fontes (altifalantes) de som monocromático com frequências ligeiramente
diferentes e intensidades iguais. Os altifalantes estão situados um ao lado do outro.
Descreva o ritmo do som ouvido por um observador que se situa a uma distância
tão grande que se pode considerar nula a distância entre os altifalantes, deduzindo
e analizando as fórmulas necessárias.
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4. Considere uma gota de chuva esférica (diâmetro 5.0 mm) que cai verticalmente do céu
para a terra. A força de resistência do ar é dada por

Fres =
π

2
Cdρarr

2v2

sendo Cd =
24
Re no regime I e Cd = 0.47 no regime II.

A constante de Reynolds (Re) é dada por

Re =
2vrρ

µ

onde v e r representam, respectivamente, a velocidade e o raio da gota de chuva e ρ
e µ representam, respectivamente, a densidade e o coeficiente de viscosidade do meio
viscoso (ρar = 1.275 kg/m3 e µar = 1.983×10−5 Pa s). Considere ainda que para valores
do número de Reynolds abaixo de 500 se aplica o regime I e acima de 500 o regime II.
Dentro dum carro que se move na horizontal parece que as gotas fazem ângulos de 73◦

com a vertical. Determine a velocidade do carro, deduzindo e explicando detalhada-
mente as fórmulas e o significado dos śımbolos nelas usados.

5. Considere um carro que se desloca com uma velocidade constante ao longo dum percurso
circular ...

a com raio de 30 metros, numa pista plana e horizontal. Qual a velocidade máxima para
que o carro não saia do percurso, se o coeficente de atrito entre os pneus e a pista for
igual a 0.4?

b e horizontal com raio de 30 metros, numa pista cónica que faz um ângulo de 60◦ com
a horizontal. Qual a velocidade máxima para que o carro não saia do percurso, se o
coeficente de atrito entre os pneus e a pista for igual a 0.4?

c e vertical com raio de 5.0 metros, dentro de um cilindro deitado. Qual a velocidade
mı́nima necessária para que o carro não perca o contacto com o cilindro no topo do
percurso?

Considere o carro pontual nas três aĺıneas. Deduza e explique em pormenor as fórmulas
e o significado dos śımbolos nelas usados.

a

60o

b
c
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Solutions

Exerćıcio 1
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As the above phase diagram shows, at a pressure of 1 atm. boiling water has a temperature of
100 ◦C. This situation is indicated by A in the above phase diagram.
Walter Lewin closes the metal container when the water vapor has substituted almost all air in
the container. In contact with the surrounding air at room temperature (20 ◦C), the system will
slowly cool down to room temperature. But, all the time the container contains water and water
vapor in coexistence. Hence, the process follows the curve which indicates the temperature and
the pressure for the situation that water and water vapor are in coexistence. This is indicated by
an arrow in the above phase diagram. The final temperature will be room temperature.
At room temperature, indicated by B in the above phase diagram, a mixture of water and water
vapor has a pressure of about 0.02 atm. That is much less than the pressure of the environment
which is about 1.0 atm. Hence, the pressure of the interior of the container is much less than
the pressure of the exterior of the container, which causes the container to implode as the video
indeed shows.
The purposes of this experiment are:
1. To show that the boiling point of water at 20 ◦C has a very low pressure of about 0.02 atm.
2. To demonstrate the tremendous force of the atmospheric pressure.

b: The plastic ball consists of a thin plastic layer which encloses a certain amount of air that has
the same pressure, or a little bit higher, as the environmental pressure of 1 atm. That is the reason
that one needs quite some force in order to deform the plastic ball. But, at the bottom of the
swimming pool the ball suffers an exterior pressure which is a lot larger than the environmental
pressure of 1 atm., namely about 0.1 atm extra for each 1 meter of depth under water. Under
such pressure the air in the interior of the ball occupies a smaller volume. Hence, the plastic layer
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is too large for the volume of air it encloses. As a consequence it can be more easily deformed.
The purpose of the experiment is to demonstrate that the volume of a certyain amount of (ideal)
gas decreases when the pressure of the amount of gas increases. For an ideal gas this is given by
Boyle’s law.

c:
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As the above phase diagram shows, at a pressure of 1 atm. solid CO2 can at most have a
temperature of some −78.5 ◦C. At that temperature solid CO2 sublimates to gaseous CO2 when
in thermal contact with substances of higher temperatures, like with the air or with a plastic tube
at room temperature. Consequently, inside the plastic tube, but before closing the tube, one has
an equilibrium of solid and gaseous CO2 at a temperature of −78.5 ◦C and at a pressure of 1.0
atm. This situation is indicated by A in the above phase diagram. After closing the tube, the
solid CO2 recieves heat from its surroundings, hence its temperature increases. But all the time
it is sublimating into gaseous CO2 when it recieves heat. So, the process is indicated by the curve
at which solid and gaseous CO2 are in coexistence. This is indicated by an arrow in the above
phase diagram.
We find that as the temperature increases also the pressure increases.
At a certain instant one reaches, at a temperature of −56.4 ◦C and a pressure of 5.4 atmosphere,
the triple point of CO2, which is the purpose of the experiment and which is indicated by B in
the above phase diagram. At that point also liquid CO2 can exist and is indeed observed inside
the plastic tube.
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Exerćıcio 2
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In the figure we show the four forces which are involved in this case: The weight of the person
~P , the normal reaction force of the floor ~N , the friction force between the ladder and the floor
~A and the normal reaction force of the wall ~R. In the case of point particles all forces apply
in the same point. However, in the case of extended objects the forces have different points of
application. In the righthand figure we have indicated the positions where the four forces apply:
~r1 where the normal reaction force of the wall ~R applies, ~r2 where the weight of the person ~P
applies and ~r3 where the normal reaction force of the floor ~N and the friction force between the
ladder and the floor ~A apply.
We have chosen the xy coordinates as indicated in the righthand figure. The resulting vector
representations for the four forces are then given by

~P =

(

0
−mg

)

, ~N =

(

0
N

)

, ~R =

(

R
0

)

and ~A =

(

−A
0

)

Let us denote the height where the person stays on the ladder by h and, furthermore, the length
of the ladder by ℓ (ℓ = 5 m). Then, for the distance from the origin of our coordinate system
to the place where the ladder touches the floor, one finds ℓ cos (60◦) = ℓ/2, whereas the ladder
touches the wall at a height of ℓ sin (60◦) = ℓ

√
3/2 Consequently,

~r1 =

(

0
1
2
ℓ
√
3

)

, ~r2 =







1
2
ℓ− h√

3

h





 and ~r3 =

(

1
2
ℓ
0

)

When there is equilibrium, then the forces cancel each other (first law of Newton). Hence:

0 = ~P + ~N + ~R + ~A =

(

R−A
−mg +N

)

From which we obtain
A = R and N = P = mg

Consequently, the forces ~R and ~A are undetermined.
But, unlike point particles, extended objects can rotate. They do so when a torque is acting

on them. In equilibrium, when nothing rotates, there is no torque acting on the ladder. Hence,
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for the torques of the four forces one has

0 = ~r1 × ~R + ~r2 × ~P + ~r3 × ~N + ~r3 × ~A

=







0
0

−1
2
ℓ
√
3R





+











0
0

−
(

1
2
ℓ− h√

3

)

mg











+







0
0

1
2
ℓN





+







0
0
0







=











0
0

−1
2
ℓ
√
3A−

(

1
2
ℓ− h√

3

)

N + 1
2
ℓN











=









0
0

−1
2
ℓ
√
3A + h√

3
N









Notice that the torque vectors associated with anticlockwise rotation are in the positive z direction,
whereas those associated with clockwise rotation are in the negative z direction.

We find thus:
A

N
=

2h

3ℓ

Furthermore we know that

2h

3ℓ
=

A

N
≤ (static friction coefficient)

Consequently, the ladder starts slipping away when

2h

3ℓ
= (static friction coefficient) = 0.20 ⇐⇒ h = 0.20

3

2
ℓ = 0.30× (5.0 m) = 1.5 m.

b: The force with which the person pulls the cord is transmitted to the point particle by the
tension in the cord. However, the position vector of the point particle and the tension in the cord
point in the same direction. That implies that the vectorial product of the position vector of the
point particle and the tension in the cord vanishes. Hence, no torque is acting on the system.
Consequently, the angular momentum of the system is conserved.
The angular momentum of the rotating point particle is given by (I moment of inertia of the
system, ω angular velocity of the point particle, M mass of the point particle R radius of the
trajectory of the point particle and v velocity of the point particle.)

L = Iω = MR2 v

R
= MRv

If that is conserved, one has (M is constant)

Rfinalvfinal = Rinicialvinicial ⇐⇒ vfinal =
Rinicial

Rfinal

vinicial =
2.0 m

0.5 m
(1.0 m/s) = 4.0 m/s.

Exerćıcio 3

a: For standing waves in a closed tube one assumes that at the ends of the closed tube are
vibration nodes. Consequently, when there are three additional nodes observed then the tube has
five nodes. That situation is depicted in the figure below.
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The distance between two nodes is equal to half a wave length. Hence, the length of the tube
ℓ equals two wave lengths:

ℓ = 2λ ⇐⇒ λ =
1

2
ℓ =

1

2
(1.36 m) = 0.68 m .

The speed of sound v can be found from the distance sound travels during one oscillation, namely
exactly one wave length λ. The time lapse for one oscillation equals the period T . Consequently,
we obtain

λ = vT ⇐⇒ v =
λ

T
.

The frequency f defines the number of oscillations per second, hence fT = 1.

v =
λ

T
= fλ = (500 Hz) (0.68 m) = 340 m/s .

Some students assumed that the three nodes included the nodes at the closed ends of the tube.
That situation is show in the figure below

node anti-node node anti-node node

In that case the length of the tube equals one wave length and thus the speed of sound would
give 680 m/s for that situation.

b: An observer hears a mixture of the sound from one loudspeaker (1) and of the sound from the
other loudspeaker (2). Let the rithme from 1 be given by ω1 and from 2 by ω2. So, an observer
hears a signal which is composed of two sinusoidal with different frequencies, but with the same
amplitudes A:

A sin (ω1t) + A sin (ω2t) = 2A cos
(

1

2
(ω1 − ω2) t

)

sin
(

1

2
(ω1 + ω2) t

)

.

Now, for a small difference between ω1 and ω2 one has

1

2
(ω1 + ω2) ≈ ω1 .

Hence, the rithme of the sine part of the signal is about the same as the sound which comes
from either of the two loudspeakers, which is a rithme which is too fast to be heard as individual
oscillations. One just hears a certain sound of a certain frequency.
But, for a small difference between ω1 and ω2 one also has that ω1−ω2 is small. That implies that
the cosine part varies very slowly with time. Such oscillation can be slow enough to be observed
by our hearing. That effect is called ”beats”: http://www.youtube.com/watch?v=gaFF4gaiKJ8
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Exerćıcio 4

The terminal velocity is the maximum velocity of a rain droplet. Hence, when the terminal
velocity is reached the velocity of a droplet is constant, consequently the acelleration zero and
thus one has the following balance of forces. Downward acts the weight of the droplet, whereas
upward act the air resistance and the buoyant force (Arquimedes):

Weight = Fres + FArquimedes

The weight of the water droplet equals its mass times the gravitational constant g, whereas its mass
equals its volume V times the density of water ρágua. Furthermore, the force of the air resistance is
given in terms of the drag constant Cd, the density of air ρar, the radius of the spherical droplet r
and its velocity v = vterm. Finally, the buoyant force FArquimedes equals the weight of the displaced
air, which, in its turn, equals the volume V of the droplet times the density of air ρar times the
gravitational constant g.

V ρáguag =
1

2
πCdρarr

2v2term + V ρarg

We obtain the terminal velocity by rearranging the various terms and by substitution of the volume
V of the sphere by V = 4

3
πr3.

4

3
πr3 (ρágua − ρar) g =

1

2
πCdρarr

2v2term

8r (ρágua − ρar) g = 3Cdρarv
2
term

From here on it depends on the expression for Cd on how to proceed.

In regime I one has the following relation between Cd and Reynolds constant, Re, whereas,
moreover, the relation between Re and vterm, r, ρar and µar is given.

Cd =
24

Re
=

24µar

2vtermrρar

When we substitute this in the previous expression, we find

8r (ρágua − ρar) g = 3
24µar

2vtermrρar
ρarv

2
term =

36µar

r
vterm

Here, we solve for vterm

vterm =
2

9
r2
ρágua − ρar

µar

g

Hence, we obtain for the Reynolds number in this case

Re =
2vtermrρar

µar

=
4

9
r3
ρágua − ρar

µ2
ar

ρarg

We evaluate the expression

Re =
4

9

(

2.5× 10−3 m
)3

(1.0× 103 − 1.275) kg/m3

(1.983× 10−5 Pa s)
2

(

1.275 kg/m3
) (

9.83 m/s2
)

= 2.21× 105
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We find thus that the Reynolds number for this case is much larger than what is allowed to apply
regime I.

In regime II one has

Cd = 0.47

which leaves us for vterm with the expression

v2term =

4
3
πr3 (ρágua − ρar) g

1
2
πCdρarr

2
=

8r (ρágua − ρar) g

3Cdρar

=
8r (ρágua − ρar) g

3Cdρar

We evaluate

v2term =
8 (2.5× 10−3 m) (1.0× 103 − 1.275) kg/m3

(

9.83 m/s2
)

3× 0.47×
(

1.275 kg/m3
)

We find vterm = 10.45 m/s.
Hence, for the Reynolds number

Re =
2vtermrρar

µar

=
2 (10.45 m/s) (2.5× 10−3 m)

(

1.275 kg/m3
)

(1.983× 10−5 Pa s)

= 3.35× 103

This is larger than 500. Hence, we are allowed to apply regime II for this case.

For the velocity of the car we obtain then finally

vcar = vterm × tan (73◦) = 10.45 m/s× tan (73◦) = 34.2 m/s = 123 km/h

Exerćıcio 5

a:

P

N

A

As the above figure shows, the weight (m mass, g gravitational acelleration) P = mg of the
point particle (car) is compensated by the normal force N = P . The force which keeps the point
particle in circular motion is the friction force A between the tires and the track. Consequently,
the centripetal force (R radius, v velocity) Fcentripetal = mv2/R equals the friction force:

m
v2

R
= Fcentripetal = A .
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The friction force is always smaller than or equal to the maximum friction force Amax, which is
here given by

Amax = (friction coefficient)×N = 0.4N = 0.4P = 0.4mg .

So, we obtain

m
v2max

R
= A ≤ Amax = 0.4mg ⇐⇒ vmax ≤

√

0.4gR =

√

0.4
(

9.83 m/s2
)

(30.0 m) = 10.9m/s .

The maximum velocity for the car not to leave the circular motion equals vmax = 10.9m/s =
39.1km/h.

b:

y

x
F

centripetal A
P

N

60◦

P

N
A
F

centripetal

As the above figure shows, the weight (m mass, g gravitational acelleration) P = mg of the
point particle (car) is not compensated by the normal force N . However, since the particle’s
trajectory is horizontal, the sum of P , N and the friction force A must be horizontal and equal
to the centripetal force Fcentripetal. We write (N =

∣

∣

∣

~N
∣

∣

∣ and A =
∣

∣

∣

~A
∣

∣

∣)

~P =





0

−mg



 , ~N =





−N sin (60◦)

N cos (60◦)



 , ~A =





−A cos (60◦)

−A sin (60◦)





and (R radius and v velocity)

Fcentripetal =







−mv2
R

0





 .

So,






−mv2
R

0





 = Fcentripetal = ~P + ~N + ~A =





−N sin (60◦)− A cos (60◦)

−mg +N cos (60◦)−A sin (60◦)



 .

From the y component we deduce

mg = N cos (60◦)−A sin (60◦) .

From the x component we thus find

m
v2

R
= N sin (60◦) + A cos (60◦) ⇐⇒
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⇐⇒ v2 =
Rg

mg
{N sin (60◦) + A cos (60◦)} = Rg

N sin (60◦) + A cos (60◦)

N cos (60◦)− A sin (60◦)
.

We obtain the maximum velocity when we substitute the maximum possible friction force Amax =
αN (α friction coefficient).

⇐⇒ v2 = Rg
sin (60◦) + α cos (60◦)

cos (60◦)− α sin (60◦)
= (30.0 m)

(

9.83 m/s2
)

1
2

√
3 + 0.4× 1

2
1
2
− 0.4× 1

2

√
3
= (45.2 m/s)2 .

The maximum velocity for the car not to leave the circular motion equals vmax = 45.2m/s =
163km/h.

c:

P

N

v

As the above figure shows, when the point particle (car) passes through the top of its circular
trajectory the weight (m mass, g gravitational acelleration) P = mg of the point particle (car) and
the normal forceN point in the same direction, both towards the center of the circle. Consequently,
the centripetal force is equal to the sum of those two forces (v velocity, R = 5 m radius).

m
v2

R
= Fcentripetal = P +N = mg +N .

The normal force indicates whether there is contact between the car and the wall of the cylinder.
Hence,

N > 0 .

The minimum velocity at which contact is just lost in the top, occurs for N = 0. In that case

m
v2min

R
= Fcentripetal = P = mg ⇐⇒ vmin =

√

gR =

√

(

9.83 m/s2
)

(5.0 m) = 7.0 m/s .

Thus, the minimum velocity equals vmin = 7.0 m/s = 25 km/h.
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