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Some topics in Geometry and Gravitation

These notes are born as a result of a series of discussions with my colleague Humberto Pascoal
from the Centre of Theoretical Physics at the University of Coimbra, Portugal, on the principles
of the description of a curved two-dimensional surface embedded in three dimensions. The ideas
contained in these notes are not new. On the contrary, the simple and elegant methods which
lead Gauss to his Egregium Theorem, lead us to study in more detail a subject which almost two
centuries ago has been studied by Carl Friedrich Gauss (1777-1855), Janos Bólyai (1802-1860)
and Nikolay Ivanovich Lobachevski (1793-1856).

The notation which I have used in this notes, is the one which is most popular amongst
physicists, in order not to discourage first and second year physics students.

Moreover, I do not intend to be rigorous, neither complete.
Below you find the literature which I consulted.

December, 1988.

Eef van Beveren
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Part I

Introduction
Einstein’s discovery that the Lorentz transformations follow from a simple principle, namely the
constancy of the light velocity in all inertial reference frames, was an important breakthrough
for the development of a full theory of Gravity. But, many old concepts had to be replaced
as well. In this notes we will pay some attention to important contributions from differential
geometry, in particular, to the notion of a freely moving particle in a curved manifold.

First we pass through the definition of coordinates and the description of moving objects by
a coordinate system. Then we pay some attention to Galilei, Lorentz and Poincaré transfor-
mations. In part II we come to introduce the main dish.

1 The aftermath of a physics exam

Praia Perpêtua has a very long and perfectly straight road for bicycles alongside the beach.
On a beautiful sunny day just a few weeks before the beginning of the beach season, a young
man, named Alex, is seated at the veranda of his beach apartment just next to the road. From
there he watches the movements on the beach and enjoys the never ending sound of the waves
breaking into foam at the sand of the beach. It is a lovely day, but only a very few people
are walking in the sand or taking a bath in the ocean, probably since it is only nine o’clock in
the morning. He observes that this morning the ice-cream vendor installed his car next to the
road at only 43 meters to his right. At his left at 39 meters distance there is a small restaurant
where you can eat fresh fish every day of the year.

Since Alex considers himself the center of the Universe, wherever he is seated, he always
represents the origin of his coordinate system. Moreover, since he is nevertheless a reasonably
well educated person, he measures distances in meters. As far as the bike road is concerned we
will consider only one dimension and indicate the coordinate system of Alex by x(A). For the
ice-cream car we find then

x
(A)
ice-cream car = +43 , (1)

whereas, for the fish restaurant we obtain

x
(A)
fish restaurant = − 39 . (2)

The plus and minus signs have nothing to do with a classification of Alex towards eating ice
cream or fish, he actually loves both ice cream and fresh fish, but indicate that we have chosen
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the positive sense of the coordinates in the direction of the ice-cream car. The opposite direction
is then automatically in the negative sense. On purpose, we have not indicated units in formulas
(1) and (2), since we have stated the unit system of Alex before.

A young couple on a bicycle passes by. They are Bruno and Clara who both greet Alex.
Bruno does the pedaling, whereas seated on the back the bike, his arms around the waist of
Clara who is seated on the saddle and does the steering. They are heading towards the ice-
cream car. However, just some meters after passing Alex, Bruno stops the bike and sits with
Clara in the sand next to the road, Clara at Bruno’s lap. They are talking about the physics
exam of yesterday and, in particular, discussing a problem about relative motion, while, in the
mean time, hugging and kissing each other. After some half an hour they decide to buy an ice
cream, but not without measuring the distance from where they are seated till the car. Bruno
measures distances in large steps, which he knows are just equal to one meter. So, he sets out
towards the car and arrives after 26 steps. There, he patiently waits for Clara.

Clara measures the world, which consists out of everything which is close to her, in the well-
shaped palms of her slim hands. Consequently, she prefers to measure distances with the size of
her hands. Bruno enjoys observing her, busy on her knees, slowly approaching him, by putting
one hand next to the other in the sand while the sun is shining on her back. Threehundred
twenty five she counts when she ends at Bruno’s feet. Well done, Bruno agrees, I know that
the palms of those tender hands of yours measure precisely eight centimeters. He gives her a
big kiss and orders their ice creams. One girlish, with strawberries, for his Clara, and one more
serious, with chocolate, for him. They walk back to their bicycle while eating their ice creams.

In the coordinate system of Bruno, which we indicate by x(B), we find for the coordinates of
the ice-cream car and the restaurant respectively

x
(B)
ice-cream car = +26 , (3)

and
x
(B)
fish restaurant = − 56 . (4)

Furthermore, in the coordinate system of Clara, which we indicate by x(C), we find for the
coordinates of the same respectively

x
(C)
ice-cream car = +325 , (5)

and
x
(C)
fish restaurant = − 700 . (6)

Notice that the origins of the coordinate systems of Bruno and Clara are at the position where
they stopped their bicycle.

While still walking, Bruno and Clara see far behind the restaurant how blond beauty Diane
with her elegant legs is pedaling her bicycle towards them. Clara is not very fond of meetings
with Bruno’s former girlfriend. In particular not, when she is driving her bicycle dressed in
a scandalous mini bikini. But then, Bruno puts his arm around Clara’s shoulders and gives
a long kiss with a little bit of chocolate ice cream in her curly dark hairs full of sand. Both
start calculating how much time will elapse before Diane will pass by the place where they were
seated.

Bruno starts his stopwatch when Diane is passing by the fishermen monument at 56 meters
beyond the fish restaurant. He finds that it takes her exactly 20 seconds from there to the
restaurant. So, he concludes that it will take yet another 20 seconds before she will reach them.
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Enough time to sit down with Clara, facing the ocean, their backs turned towards the road.
Clara counts time with the beats of her heart which, actually, is beating as bit faster than
normal right now. Measuring exactly the same distance as Bruno had selected, she comes at
28 beats in total. They sit down in the sand, enjoying their ice creams and pretending not to
notice who is passing by on her bike.

In the mean time, Alex also had come aware of who was approaching him at her bicycle. Ever
since Diane had broken up with Bruno, he assumed that his chances with her were written in the
stars. Therefor, he also measured her speed at his stopwatch to come to the same conclusion as
Bruno, and prepared himself for a good impression on his, as yet secret, love. In his coordinate
system he found that her position coordinate at time t(A) is given by1

x
(A)
Diane

(

t(A)
)

= − 95 + 2.8× t(A) . (7)

But, although his formula correctly corresponds to Diane’s motion, unfortunately for Alex,
Diane hardly responded to his “how are you Diane” when she passed by.

Disappointed, he is still watching her, when he assists how Clara cannot resist to give Diane a
provocative look over Bruno’s shoulder. It is responded by a slow and sensual hello of Diane. On
hearing her attractive voice, Bruno turns his head, utters a soundless hello and, like hypnotised,
keeps watching the most pleasant scene of the sun-tanned body of the beautyful girl, pedaling
on her bicycle, her blond hair floating in the air like the tail of a comet when it passes close to
the sun. However, Clara, disturbed by Bruno’s confusion, reacts by putting what is left of her
ice cream on his forehead. That gesture rapidly brings him back to reality. While joking about
her attack of jealousy, he holds Clara firmly in his arms and kisses her delicately. Both start
laughing and soon the incident seems to belong to the past.

While refering to the motion of her bicycle, Bruno affirms that Diane’s motion is well de-
scribed by the following formula2 in his coordinate system.

x
(B)
Diane

(

t(B)
)

= − 112 + 2.8× t(B) . (8)

Clara, still not completely secure of her spell of charm on Bruno, is not exactly eager to share
her result on this particular event with Bruno. But, on the other hand, she also does not want
him to notice her insecurity. So, she tells Bruno that she found3

x
(C)
Diane

(

t(C)
)

= − 1400 + 25× t(C) . (9)

Bruno, still absent minded, says that he is not completely sure whether this agrees with his
result (8). It is to be admired that Clara manages not to respond that he apparently is not
sure about several issues, but, instead, proposes to visit Alex. They decide to go to Alex and
check with his findings.

Alex, glad to have some company to distract him from his disappointment, happily shares
the findings on the motion of his secret love, with Clara and Bruno. Soon the three start talking
about Diane, each with different feelings with regard to the fascinating girl. Bruno with some
sadness about the way he lost her, Alex regretting his recent failure to attract her attention
and Clara with some latent boiling fury.

195 is in meters; 2.8 in meters per second (corresponding to about 10 km/h); t(A) in seconds.
2112 is in meters; 2.8 and t(B) as for Alex
31400 is in widths of Clara’s hands; 25 in widths of Clara’s hands per heart beat (corresponding to about 10

km/h); t(C) in heart beats.
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Based in equations (1) to (6), they had come to the conclusion

x(B) = x(A) − 17 , x(C) = 12.5× x(B) and x(C) = 12.5× x(A) − 212.5 . (10)

Notice that all relations are linear in the coordinates, whereby the first just stems from the
translation of the origin of Bruno and Clara with respect to the origin of Alex, the second from
the different units of Bruno and Clara, whereas the third relation comes from a combination of
the difference in units and the translation of origins.

With respect to instants of time they found

t(B) = t(A) , t(C) = 1.4× t(A) and t(C) = 1.4× t(B) . (11)

Clara’s heart beat was a bit faster than one per second. Hence, her unit of time is a bit smaller
than the unit of time for Bruno and Alex. The latter unit is the second.

2 Moving reference system

Alex, Clara and Bruno are still talking about Diane, when they suddenly observe her returning
from her bicycle trip. But, from the language of her well-shaped body, Alex deduces that she
is not as happy as when she passed by his veranda earlier. He decides to call her.

This time he is succesful, Diane stops her bicycle and accepts his invitation to join them.
They greet each other with hugs and kisses. But just after this warm reception ceremony, Clara
suddenly remembers that she and Bruno had something urgent to be resolved. Bruno still has
the nerve to ask what it was again that is now suddenly so urgent. But, fortunately, from the
expression at Clara’s face he understands that it is better not to insist on having his ignorance
clarified. Alex is delighted with Clara’s attitude and impatiently awaits the departure of the
couple. As by a miracle he has his blond beauty Diane seated with him at his sofa on his
veranda. Much more than he had bargained for earlier this morning.

Without paying much attention to it, Alex had noticed that Diane was not driving her own
bicycle when she passed by his veranda for the first time. Actually, it is her father’s bicycle she
is using. The reason for that, as we will see, is a subject which she by no means is prepared to
confess to Alex.

Diane lives in a small house near the fishermen monument. In the morning, when Diane
awakes, she usually opens the window of her bedroom completely and stays there for a while
in her nightdress, leaning on her elbows, watching the sea, the beach, the seagulls and the
people passing by at the road. This morning, when she saw Bruno and Clara passing by, Diane
started to slip into her dreamworld, thinking on how much she had enjoyed such trips with
Bruno on his bicycle. In particular, when he, like today with Clara, acted as the motor of the
bicycle, whereas she, with his arms around her, could just go to any direction which came to
her mind. Very often she had steered both of them to a quiet sunny valley in the dunes, where
they had once discovered a perfect site for lovers, hidden by pleasant vegetation of red and
white flourishing oleanders and yellow broom with their intense perfume. She started feeling
like returning to her bed. But, then she saw a glimpse of Eric who comes regularly to the beach
for a weekend or for a few days, and who lives in an apartment just two blocks down the road.

Eric, who is probably somewhere in his early twenties, has a strong muscular body and a
pleasant face with blond curly hair. He uses to practice jogging when he is at the beach. When
Diana saw him moving towards the fishermen monument, she calculated from his speed that if
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she could manage, within five minutes, to be on her bicycle in front of the fishermen monument,
she could just catch up with him at the place where the bike road turns away from the beach,
towards the inland, and where he probably would rest a little before returning to his apartment.
The distance to that place is 2.1 kilometers measured from the fishermen monument.

Diane already started imagining Eric on the back of her bike with his muscular arms around
her body. But, then she remembered that her bike, unfortunately, cannot carry persons in the
back. Hence, she decided to take her father’s bike instead.

When she started out at the fishermen monument, she knew from Eric’s speed that he was
some 600 meters far. From her velocity she deduced that in her reference frame, with her
father’s bicycle at the origin, the distance to Eric was decreasing at 0.8 meters per second,
hence, that Eric was approaching her at that speed. It would thus take 12.5 minutes before she
would meet Eric right at the place which she had calculated. In her coordinate system Diane
describes Eric’s position by

x
(D)
Eric

(

t(D)
)

= 600 − 0.8× t(D) . (12)

Alex also had seen Eric passing by this morning. He had met him a few times in the
discothèque. So, they greeted each other. Alex, curious to know at which place Eric would
turn around to return home, measured his speed at 2.0 meters per second. In the coordinates
of Alex, Eric’s position is given by

x
(A)
Eric

(

t(A)
)

= 505 + 2.0× t(A) , (13)

as long as he continues to move in the positive sense with the same velocity. The latter formula
is explained in more detail below.

Alex restarted his stopwatch when he saw Diane passing by the fishermen monument. Con-
sequently, he thereby defines for himself a new beginning of time t(A) = 0, at the same time
that, coincidently, Diane started her stopwatch. Hence,

t(A) = t(D) . (14)

But Alex’ choice of a new instant of time t(A) = 0, occurred 4 minutes and 12.5 seconds after
Eric had passed by his veranda. In that interval of time Eric moved 505 meters. Consequently,
at t(A) = 0 Eric is in position

x
(A)
Eric

(

t(A) = 0
)

= 505

in the coordinates of Alex. This explains the constant in formula (13) and, moreover, agrees
with the observation of Diane,

x
(D)
Eric

(

t(D) = 0
)

= 600 ,

since Diane and Alex are 95 meters apart at t(A) = t(D) = 0.
Alex, who is a very curious person, asks Diane why she is driving her father’s bicycle. But

Diane, who has of course no intention to share her story with Alex, tells him that her bike is
broken and has flat tires. Alex immediatly offers himself to repair her bike. However, just when
Diane starts explaining that her father is already taking care of the issue, she sees Eric passing
by, heading for his apartment. Eric greets Alex and, furthermore, gives a big smile to Diane.
Alex notices her blushing and feels his heart broken for the second time this morning.

But, he ignores this feelings. Instead, he tells Diane about his formula (13) on Eric’s dis-
placement in function of time, which he had determined earlier this morning when Eric was
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jogging towards the other end of the road. Diane decides to also share her formula (12) with
Alex. For a while they are both puzzled about the differences.

But then Alex finds the solution. He starts explaining it to Diane, by telling her about
his formula (7) on her motion, when she was cycling towards the road exit. Diane reacts
surprised and first looks a while at Alex before she asks him which espionage service makes
him calculating everybody’s movements on the bicycle road. Now, Alex starts blushing and
confesses that in her case, the calculus had been done for him to know how much time he had
to prepare himself for making a good impression on her. He also tells her that he had been
very disappointed when she hardly took notice of him. Diane’s mouth stays half open while she
continues staring at Alex, inspecting the noble regular face of the tall slim boy, outstanding in
physics, mathematics and chemistry. Then, suddenly she moves slowly as close to him as she
can manage and asks him to please hold her very tight.

At this point, it seems that it might take a while before Alex will explain his solution to
Diane, if ever. So, we better do it ourselves.

While Diane was driving her bicycle, her reference frame of x(D) coordinates was moving
with her. She considered herself the origin of that reference frame and was moreover moving
in the positive sense. In formula (7) Alex had determined her speed at 2.8 (m/s) with respect
to his coordinate system which is the reference frame attached to the Earth.

Alex has determined the speed of Eric at 2.0 (m/s) in the positive sense in formula (13).
Diane found in formula (12) that Eric moved in the negative sense, towards her, with a speed of
0.8 (m/s). Hence, when we denote speed by v then a relation for the various velocities involved,
is given by

v
(D)
Eric = v

(A)
Eric − v

(A)
Diane , (15)

or in words: Although running in the opposite direction, Eric is approaching Diana since their
distance is decreasing with time. Consequently, the velocity of Eric with respect to Diane is
in the negative sense in Diane’s coordinate system and equals the difference of the velocity of
Eric with respect to Alex, which is in the positive sense, and the velocity of Diane with respect
to Alex, which is also in the positive sense.

Now, how can the relation (15) be fully recovered from the relations (13) and (12)?
From formula (7) we obtain in the reference frame of Alex the position of the origin of the

reference frame of Diane (which is her father’s bicycle) in function of the instant of time t(A)

measured at the watch of Alex. Hence, we can determine the position of Eric, x(A), at a certain
instant of time t(A) in the coordinate system of Alex, starting from his postion in the coordinate
system of Diane and the position of her origin with respect to the origin of Alex:

x
(A)
Eric

(

t(A)
)

= x
(A)
Diane

(

t(A)
)

+ x
(D)
Eric

(

t(A)
)

. (16)

Here, we substitute equation (7), to find

x
(A)
Eric

(

t(A)
)

= − 95 + 2.8× t(A) + x
(D)
Eric

(

t(A)
)

. (17)

Next, when we substitute formula (12), also using the relation (14), then we recover relation
(13).

Now, from formula (16) we may deduce

d x
(A)
Eric

(

t(A)
)

d t(A)
=

d x
(A)
Diane

(

t(A)
)

d t(A)
+

d x
(D)
Eric

(

t(A)
)

d t(A)
. (18)
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In the second term on the righthand side of formula (18), we may substitute relation (14). We
obtain then indeed relation (15) in the form

v
(A)
Eric = v

(A)
Diane + v

(D)
Eric . (19)

The linear transformations (14) and (17) preserve the relation (19), or equivalently relation
(15). Transformations which preserve those relations are called Galilei transformations.

3 Transformations

From the previous section we have understood that it is very important to distinguish between
a coordinate system and the coordinates of a moving object. Furthermore, we should define well
what we really, really want (Spice girls, 1994) when we construct coordinate transformations.

1. Coordinate system (reference frame)

Here, we define a coordinate system as a continuous set of points which represent the
positions of pointlike objects. We assume that such points fill up the whole space. To
each point we may associate a set of real numbers, called vectors. In one dimension each
point is characterized by one real number, in two dimensions by two real numbers, etc.
We assume furthermore that neighbouring points are characterized by neighbouring sets
of real numbers. Usually we erect a set of coordinate axes which intersect all in one point,
the origin of the coordinate system. The origin is represented by the set (0, 0, ..., 0). All
other points are represented by their projections on those axes. In that case the whole
space is defined once the unit vectors on each axis are defined.

2. The coordinates of a moving object

A moving object is described by a set of coordinates which varies in function of a time
parameter: (x1(t), x2(t), ..., xn(t)) in an n-dimensional space. The resulting space is a
one-dimensional subspace of the full coordinate space. In one dimension one does not
notice well the difference between the space and the subspace which describes a moving
object. However, in higher dimensions it is obvious, since the space described by a moving
point particle is just a line.
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3. What we really, really want

We want to study coordinate transformations which describe reference frames which are in
relative motion with constant velocity. In particular, we want to study what is preserved
under such transformations.

In the following we will consider two one-dimensional reference systems A and B and indicate
the coordinates and time parameters by respectively x(A) and t(A) in reference frame A and by
respectively x(B) and t(B) in reference frame B.

4 Galilei transformations

Besides possible scale transformations by choosing different unit systems and which we will not
further discuss here, the Galilei transformations consist out of

1. translations

We have space translations, given by

x(B) = x(A) + constant , (20)

which stem from choosing a different origin of space, and time translations, given by

t(B) = t(A) + constant , (21)

which stem from choosing a different beginning of time counting.

2. rotations

In one dimension there are no relevant rotations.

3. inversion

We have space inversion, given by

x(B) = −x(A) , (22)

which stem from changing positive and negative sense, and time inversion, given by

t(B) = − t(A) , (23)

which stem from counting backward in time.

4. boosts

Under a boost we understand a coordinate transformation for relatively moving reference
frames. Suppose that B is moving in the positive sense with respect to A with a constant
velocity given by V and assume also that at time t(A) = 0 the origins coincide and,
moreover, t(B) = t(A). Then this boost is given by the coordinate transformation

x(B) = x(A) − V t(A) = x(A) − V t(B) . (24)
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All the above transformations preserve distance and relative motion. Take for example the
boost transformation (24) and two pointlike objects a and b in motion. Let their motion be
described by

x(A)
a

(

t(A)
)

and x
(A)
b

(

t(A)
)

, (25)

in reference frame A. There are no restrictions on the dependence of their argument t of the
functions x(A)

a (t) and x
(A)
b (t). One may consider any motion, like

x(A)
a

(

t(A)
)

= 43 + 24 cos
(

t(A)
)

and x
(A)
b

(

t(A)
)

= −512 + 318 t(A)5 , (26)

or whatever other complicated motion.
In system B, which is here considered to be in motion with respect to system A with constant

velocity V , using the transformation (24) and t(B) = t(A), we find for the description of the
motion of objects a and b

x(B)
a

(

t(B)
)

= x(A)
a

(

t(B)
)

− V t(B) and x
(B)
b

(

t(B)
)

= x
(A)
b

(

t(B)
)

− V t(B) . (27)

For their relative distance in reference frame B we obtain
∣

∣

∣x
(B)
b

(

t(B)
)

− x(B)
a

(

t(B)
)∣

∣

∣

2
=
∣

∣

∣x
(A)
b

(

t(B)
)

− x(A)
a

(

t(B)
)∣

∣

∣

2
=
∣

∣

∣x
(A)
b

(

t(A)
)

− x(A)
a

(

t(A)
)∣

∣

∣

2
.

(28)
Hence, the relative distance of a and b is equal in both reference frames A and B for all times.

For their relative velocity we obtain

d x
(B)
b

(

t(B)
)

d t(B)
−

d x(B)
a

(

t(B)
)

d t(B)
=

d x
(A)
b

(

t(A)
)

d t(A)
−

d x(A)
a

(

t(A)
)

d t(A)
. (29)

Hence, we find that relative motion is not affected by the Galilei transformations. Newtonian
physics is the same in reference frame A as in reference frame B.

4.1 The kinetic energy

The kinetic energy of a moving point particle is related to its mass, m, and its velocity, v, (or,
alternatively, its linear momentum), by

E(kinetic) =
1

2
mv2 . (30)

Now, since mass is invariant under Galilei transformations, and since, moreover, velocities add
up (see formula 19), it is clear that the kinetic energy of a particle is different in different
inertial frames, under Galilei transformations.

5 Pioncaré transformations

Instead of leaving |xb − xa|2 invariant, as under Galilei transformations, under Poincaré trans-
formations the event distance, for c = 1 given by

(xb − xa)
2 − (tb − ta)

2 , (31)
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is left invariant.
The first question is, of course, to define well what this quantity represents. In order to

answer that question, we start by defining the notion of an event. An event is the happening
of something at a certain place and at a certain time. For example, when Bruno stopped the
bicycle at 9h02 at 17 meters distance from Alex, or when Eric passed by the veranda of Alex at
9h36. These are two events. We can determine the quantity (31) for those two events. Under
Poincaré transformations this gives the same result for Alex, sitting in his sofa at his veranda,
as it gives for Diane driving her father’s bicycle.

For space and time translations and inversions it is obvious that the quantity (31) is invariant,
as well as for space rotations, because space rotations do not touch the time and do leave
invariant distances in space. So, we only have to consider Poincaré transformations for reference
frames which are moving with relative constant velocity β = V/c, i.e. boosts. The latter
transformations are also called Lorentz transformations.

Hence, the task is to find a transformation for moving frames which leaves the quantity (31)
invariant. This has been done by Albert Einstein (1905). He obtained

x(B) = γ
(

x(A) − β t(A)
)

and t(B) = γ
(

t(A) − β x(A)
)

, (32)

where

γ =
1

√

1− β2
. (33)

It is easy to demonstrate that the coordinate transformation (32) satisfies the condition that
the quantity (31) is invariant. Below we express in terms of the coordinates of reference frame
A, the event distance (31) for the two events a and b as determined in reference frame B. We
make thereby use of expressions (32) and (33).

{

x(B)
a − x

(B)
b

}2 −
{

t(B)
a − t

(B)
b

}2
= (34)

=
{

γ
(

x(A)
a − βt(A)

a

)

− γ
(

x
(A)
b − βt

(A)
b

)}2 −
{

γ
(

t(A)
a − βx(A)

a

)

− γ
(

t
(A)
b − βx

(A)
b

)}2

= γ2
{(

x(A)
a − x

(A)
b

)

− β
(

t(A)
a − t

(A)
b

)}2 − γ2
{(

t(A)
a − t

(A)
b

)

− β
(

x(A)
a − x

(A)
b

)}2

= γ2
{

(

1− β2
) (

x(A)
a − x

(A)
b

)2
+
(

β2 − 1
) (

t(A)
a − t

(A)
b

)2
}

=
(

x(A)
a − x

(A)
b

)2 −
(

t(A)
a − t

(A)
b

)2
.

Once more using relation (32), we deduce below a relation for the addition of velocities.
When reference frame B moves with constant velocity β = V/c with respect to reference frame
A, and an object moves with velocity dx(A)/dt(A) in reference frame A, then we find for its
velocity as measured with respect to the coordinates used in reference frame B the following.

dx(B)

dt(B)
=

dx(B)

dt(A)

dt(B)

dt(A)

=

γ

(

dx(A)

dt(A)
− β

)

γ

(

1− β
dx(A)

dt(A)

)
=

dx(A)

dt(A)
− β

1− β
dx(A)

dt(A)

. (35)
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In particular for an object which travels with the speed of light (c = 1) in frame A, we have in
frame B

c(A) =
dx

(A)
light

dt(A)
= 1 ⇐⇒ c(B) =

dx
(B)
light

dt(B)
=

1− β

1− β
= 1 . (36)

From this result we may conclude that objects which move with the speed of light with respect
to the coordinates of one reference frame, also move with the speed of light as observed by
using the coordinates of a reference frame which is in motion with a constant velocity β with
respect to the first reference system. Or in other words, light moves with the same velocity
with respect to observers in different inertial systems.

5.1 Velocities never exceed the velocity of light

In inertial frame A we study an object with velocity v (in units c) with respect to the coordinates
of reference frame A. We assume that v is smaller than the velocity of light, i.e.

|v| < 1 ⇐⇒ 1 + v > 0 and 1− v > 0 . (37)

Let us furthermore consider a reference frame B which moves with constant velocity β, also
smaller than the velocity of light, with respect to reference frame A. Now, since both v and
β are smaller than the velocity of light, we have, by the use of relations (37), the following
inequalities.

1− β v > 0

−(1 + v)(1− β) < 0 ⇐⇒ −(1− β v) < v − β

0 < (1− v)(1 + β) ⇐⇒ v − β < 1− β v .

Putting things together, we find

−1 <
v − β

1− β v
= v(B) < +1 . (38)

This proofs that v(B), which is the velocity of the object under study, as measured in the
coordinate system B, is always smaller than the velocity of light c = 1, for the case that
velocities in A do not exceed the velocity of light.

Velocities larger than the velocity of light, while not (yet?) observed, do not seem to make
part of our physical world, hence, do not have to be considered (yet?). This does not mean that
it is forbidden to study the properties of tachyons, but, just means that we do not yet need to
study them.

5.2 Small velocities

Here, we will concentrate on all-day velocities, like jogging Eric and bicycling Diane. With
respect to Alex the velocity of jogging Eric is given by (see formula 13)

dx
(A)
Eric

dt(A)
=

2.0 m/s

3.0× 108 m/s
=

2

3
× 10−8 . (39)
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Furthermore, the reference frame of Diane moves with a constant velocity (see formula 7) given
by

dx
(A)
Diane

dt(A)
=

2.8 m/s

3.0× 108 m/s
=

2.8

3
× 10−8 . (40)

Hence, by the use of formula (35), we find for the velocity of Eric in the reference frame of
Diane the following.

2
3
× 10−8 − 2.8

3
× 10−8

1− 2
3
× 2.8

3
× 10−16

≈ −0.8 m/s

3× 108 m/s

(

1 +
5.6

9
× 10−16

)

. (41)

From formula (41) we obtain the result that only in the 16-th decimal we may notice a difference
from the addition rule (15). In practice it is impossible to verify this result, since already the
errors in the measurements of the velocities of Eric and Diane are orders of magnitude larger.

Consequently, for all-day velocities we will not notice any difference between Galilei and
Poincaré transformations. Even with the velocities of supersonic airplanes, which are more
than two orders of magnitude larger than running or driving a bicycle, the effects are only
in somewhere the 11-th decimal. However, at cosmic scales or in particle accellerators where
objects reach velocities close to the light velocity, the differences between the two types of
transformations are very well observable. Millions of experiments every single day confirm that
Einstein’s basic assumption (1905) on the constancy of the light velocity was very clever.

5.3 Energy and momentum

Let us define for a point particle with velocity v

ε =
1

√
1− v2

and ~u =
~v

√
1− v2

, (42)

which in one dimension reduces to

ε =
1

√
1− v2

and u =
v

√
1− v2

. (43)

First, by the use of relations (33) and (35), we determine

ε(B) =
1

√

1− v(B)2
= γ

1− β v(A)

√

1− v(A)2
and u(B) =

v(B)

√

1− v(B)2
= γ

v(A) − β
√

1− v(A)2
, (44)

which can be written in the form

ǫ(B) = γ
(

ǫ(A) − β u(A)
)

and u(B) = γ
(

u(A) − β ǫ(A)
)

. (45)

On comparison of formulas (45) with formulas (32), we observe that the pair (ǫ , u) trans-
forms the same way as the pair (t , x). Consequently, the quantity

ǫ2 − u2 , (46)
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is an invariant under Lorentz transformations.
Moreover, from

1
√
1− ǫ2

≈ 1

1− 1
2
ǫ2

≈ 1 +
1

2
ǫ2 , (47)

we find that to lowest order

mε ≈ m+
1

2
mv2 and mu ≈ mv . (48)

The first expression in formula (48) corresponds to a constant, m, which represents the mass
of a particle, added to the kinetic energy of the particle. In Newtonian mechanics the zero of
energy is anyhow not well defined. Hence, mε represents for low velocities the kinetic energy
of the particle, since the constant term is of no importance. Furthermore, the second term in
formula (48) represents the linear momentum of the particle for low velocities.

Those concepts can be generalized. Here, we define for the total energy, E, and the linear
momentum, p of a particle which has a mass m and which moves with velocity v in a certain
reference frame

E =
m

√
1− v2

and p =
mv

√
1− v2

. (49)

Under Lorentz transformations E and p transform the same way as ε and u. From formula
(49) we observe that when v approaches the light velocity c = 1, then E tends to infinity. This
corresponds very well to experimental observation in particle accellerators.

When a particle is at rest, its energy equals m. This is exactly the most famous formula of
physics: E = mc2. The rest mass m of a particle is invariant under Lorentz transformations,
i.e.

E2 − p2 = m2 . (50)

5.4 Total invariant mass

For a system of two particles a and b the total energy is given by

E = Ea + Eb =
√

m2
a + p2a +

√

m2
b + p2b , (51)

and the total linear momentum, obviously, by

p = pa + pb . (52)

It is not difficult to demonstrate that the total invariant mass,
√
s, squared, defined by

s = {Ea + Eb}2 − {pa + pb}2 , (53)

is invariant under Lorentz transformations.
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6 Relativistic kinematics

Most of the concepts which we studied in the foregoing, can straightforwardly be extended to
three dimensions. In the following, we study scattering processes in three dimensions. For
scattering processes one can avoid to carry out explicitly the Lorentz transformations by the
use of the so-called Mandelstam variables. The latter are Lorentz invariant, hence the same in
any inertial frame.

The total energy, Etotal, for a system of two non-interacting on-mass-shell particles of masses
m1 and m2, which are freely moving with linear momenta respectively ~p1 and ~p2, is given by
the sum of the individual energies, E (~p1 ) and E (~p2 ) respectively, according to

Etotal = E (~p1 ) + E (~p2 ) =
√

~p1
2 +m1

2 +
√

~p2
2 +m2

2 . (54)

In the center-of-mass frame, where ~p1 = −~p2 = ~p, one has the following relations:

s = (ECM, total)
2 = 2~p 2 +m1

2 +m2
2 + 2

√

~p 2 +m1
2

√

−~p 2 +m2
2 ,

(

s− 2~p 2 −m1
2 −m2

2
)2

= 4
(

~p 2 +m1
2
) (

−~p 2 +m2
2
)

,

4s~p 2 = s2 − 2s
(

m1
2 +m2

2
)

+m1
4 +m2

4 − 2m1
2m2

2 ,

and ~p 2 =
1

4s

{[

s− (m1 +m2)
2
] [

s− (m1 −m2)
2
]}

. (55)

The Mandelstam variables, s, t and u, for the process

1 + 2 −→ 3 + 4 (56)

are defined by

s = (p1 + p2)
2 , t = (p1 − p3)

2 , u = (p1 − p4)
2 , (57)

or, alternatively, by using total four-momentum conservation which is given by

p1 + p2 = p3 + p4 , (58)

one also has
s = (p3 + p4)

2 , t = (p2 − p4)
2 , u = (p2 − p3)

2 , (59)

Notice that we use here the metric (+,−,−,−), which for s gives

s = (p1 + p2)
2 = (E (~p1 ) + E (~p2 ))

2 − (~p1 + ~p2)
2 . (60)

In the the center-of-mass frame, where ~p1 = −~p2, one obtains, moreover

s = (E (~p1 ) + E (~p2 ))
2 = (ECM)

2 , (61)

which equals the total invariant mass, as already anticipated in formula (55).
Furthermore, from their definition one observes that the Mandelstam variables (57) are

Lorentz invariant and hence invariants with respect to any Lorentz transformation.
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By total momentum conservation (58), one deduces

s+ t + u = 3p1
2 + p2

2 + p3
2 + p4

2 + 2p1 · (p2 − p3 − p4)

= 3p1
2 + p2

2 + p3
2 + p4

2 − 2p1
2

= p1
2 + p2

2 + p3
2 + p4

2

= m1
2 +m2

2 +m3
2 +m4

2 . (62)

Consequently, for on-mass-shell processes s, t and u are not independent.
In Fig. 1 we visualize things for the center-of-mass frame.

CM

1 2~p1 ~p2

m1 m2

CM

4

3

~p4

~p3

m4

m3

ϑCM

Before collision After collision

Figure 1: Collision in the center-of-mass system. Before collision particle 1 and particle 2 move
towards their center of mass with equal and opposite three-momenta, ~p1 and ~p2 respectively. After
collision particle 3 and particle 4 move away from their center of mass with equal and opposite three-
momenta, ~p3 and ~p4 respectively.

The angle between the direction of motion of the outgoing particle 3 and the direction of
motion of the incoming particle 1 is defined as the angle ϑCM of the scattering process of formula
(56) in the center-of-mass system. It has the following relation with the Mandelstam variable
t.

t = (p1 − p3)
2 (63)

= (p1)
2 + (p3)

2 − 2p1 · p3

= (p1)
2 + (p3)

2 − 2E (~p1 )E (~p3 ) + 2~p1 · ~p3

= (m1)
2 + (m3)

2 − 2
√

(~p1)
2 + (m1)

2
√

(~p3)
2 + (m3)

2 + 2 |~p1| |~p3| cos (ϑCM) .
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6.1 π+π−
→ K+K∗−

Consider a π+ meson which annihilates with a π− meson, resulting in two outgoing Kaon
mesons, a K+ meson and a K∗− meson. The π− meson is at rest in the laboratory, whereas
the π+ meson has a total energy of 9.0 GeV. The Kaon meson comes out with an angle of 60◦

with respect to the direction of the incoming pion, in the center-of-mass system.
Given this information, we may determine the other kinematical quantities. For the masses

of the particles we take

mπ = 0.14 GeV , mK = 0.50 GeV , mK∗ = 0.89 GeV .

Let us first determine the total invariant mass of the system.

√
s =

√

2m2
π + 2Eπ+mπ = 1.60 GeV .

With that result, also using formula (55), we may determine ~pπ
2 in the center-of-mass frame.

(~pπ)
2 =

1

4

[

s− 4m2
π

]

= 0.62 (GeV) .

Next, we can determine (~pK)
2 in the center-of-mass frame, as follows

(~pK)
2 =

1

4s

{[

s− (mK +mK∗)2
] [

s− (mK −mK∗)2
]}

= 0.148 (GeV) .

The linear momentum of K∗ is in the center-of-mass frame opposite to ~pK , of course. Conse-
quently, we can check our calculations by determining the total invariant mass

√
s after collision.

This gives

√
s =

√

~pK
2 +m2

K +
√

~pK∗

2 +m2
K∗ = 0.63 (GeV) + 0.97 (GeV) = 1.60 (GeV) ,

which is indeed what we obtained for the situation before collision. We obtain here thus that
the total energy before and after collision is the same, hence, total energy is conserved.

Then we may determine t and u

t = (mπ)
2 + (mK)

2 − 2EπEK + 2 |~pπ| |~pK | cos (ϑCM) = −0.437 GeV2 .

and

u = (mπ)
2 + (mK∗)2 − 2EπEK∗ + 2 |~pπ| |~pK∗| cos (π − ϑCM) = −1.04 GeV2 .

We will denote the total momentum of a particle in the laboratory by q and its linear
momentum by ~q. The π− meson is at rest, hence ~qπ− = 0. For the π+ we have

E (~qπ+) =
√

(~qπ+)2 +m2
π+ = 9 (GeV) ⇐⇒ ~qπ+ ≈ 9 (GeV) .

Moreover, since ~qπ− = 0, we have for t the relation

t = (qπ− − qK∗)2 = m2
π− +m2

K∗ − 2mπ−

√

~qK∗

2 +m2
K∗ ,

hence

~qK∗

2 =

(

m2
π− +m2

K∗ − t

2mπ−

)2

− m2
K∗ = 4.37 GeV2 .
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Similarly

u = (qπ− − qK)
2 = m2

π− +m2
K − 2mπ−

√

~qK
2 +m2

K ,

hence

~qK
2 =

(

m2
π− +m2

K − u

2mπ−

)2

− m2
K = 4.66 GeV2 .

Also
E (~qK ) =

√

~qK
2 +m2

K = 4.68 (GeV) ,

and
E (~qK∗ ) =

√

~qK∗

2 +m2
K∗ = 4.46 (GeV) .

Finally, we determine the angle in the frame of the laboratory, of the direction of the outgoing
K meson with respect to the direction of the incoming π+ meson.

cos (θK,lab) =
t−m2

π −m2
K + 2E (~qπ+)E (~qK )

2 |~qπ+ | |~qK | = 0.9974 ,

corresponding to an angle of 4.1 degrees.
Although hidden, by the use of Mandelstam variables, the above calculus is based in Lorentz

transformations and the constancy of the light velocity. It is, furthermore based in the defini-
tions (49) for the energy and linear momentum of a moving particle. The results are verified
by experiment, the ultimate judge on our guesses. Every single day, in various particle ac-
cellerators, millions of such scattering processes, involving two, or many more particles, are
performed. Up till today, nothing has been found which conflicts with Einstein’s assumptions.

6.2 Elastic Scattering in the center-of-mass system

In elastic scattering the outgoing particles are identical to the incoming particles, which at this
level amounts to m3 = m1 and m4 = m2. When we define the three-momenta before and after
collision by respectively ~p and ~p ′, then we have

~p1 = −~p2 = ~p and ~p3 = −~p4 = ~p ′ , (64)

hence, by using formula (55),

~p 2 =
1

4s

{[

s− (m1 +m2)
2
] [

s− (m1 −m2)
2
]}

and ~p ′2 =
1

4s

{[

s− (m3 +m4)
2
] [

s− (m3 −m4)
2
]}

. (65)

Since, moreover, m3 = m1 and m4 = m2 for elastic scattering, we have for the center-of-mass
three-momenta in that case

~p 2 = ~p ′2 . (66)

Substitution of the result (66) in expressions (61) and (63) gives the results

s =
(
√

(~p )2 + (m1)
2 +

√

(~p )2 + (m2)
2
)2

= (~p )2 + (m1)
2 + (~p )2 + (m2)

2 + 2
√

(~p )2 + (m1)
2
√

(~p )2 + (m2)
2

= 2 (~p )2 + (m1)
2 + (m2)

2 + 2
√

(~p )2 + (m1)
2
√

(~p )2 + (m2)
2 , (67)
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and

t = (m1)
2 + (m3)

2 − 2
√

~p 2 + (m1)
2
√

~p ′2 + (m3)
2 + 2 |~p|

∣

∣

∣~p ′

∣

∣

∣ cos (ϑCM)

= 2 (m1)
2 − 2

(

~p 2 + (m1)
2
)

+ 2~p 2 cos (ϑCM)

= 2~p 2 {−1 + cos (ϑCM)} . (68)

Furthermore

u = (m1)
2 + (m4)

2 − 2
√

~p 2 + (m1)
2
√

~p ′2 + (m4)
2 + 2~p1 · ~p4

= (m1)
2 + (m2)

2 − 2
√

(~p )2 + (m1)
2
√

(~p )2 + (m2)
2 − 2~p 2 cos (ϑCM) . (69)

As is obvious from the definitions of ϑCM in Fig. 1 and ~p in formula (64), one has

~p 2 ≥ 0 and − 1 ≤ cos (ϑCM) ≤ +1 , (70)

hence for the Mandelstam variables s (formula 67) and t (formula 68), we find

s ≥ (m1 +m2)
2 and t ≤ 0 . (71)
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6.3 Elastic Scattering in the lab system

In the laboratory system particle 2 is assumed to be at rest. This is visualized in Fig. 2.
We define the laboratory four-momenta by q1, q2, q3 and q4, in order to distinguish from the
center-of-mass four-momenta. We study here again the case of elastic scattering, which implies
m3 = m1 and m4 = m2.

1 2~q1

m1 m2

3

4

~q3

~q4

m3

m4

ϑlab

Before collision After collision

Figure 2: Collision in the laboratory system. Before collision particle 1 moves with three-momentum
~q1 towards particle 2 at rest (~q2 = 0) in the center of coordinates. After collision particle 3 and particle
4 move away from the center of coordinates with three-momenta ~q3 and ~q4 respectively.

Here, we obtain for the Mandelstam variables (57), which, as mentioned before, are invariant
under Lorentz transformations, hence the same for the laboratory system and the center-of-mass
system,

s = (q1 + q2)
2 = (m1)

2 + (m2)
2 + 2E (~q1 )E (~q2 ) − 2~q1 · ~q2

= (m1)
2 + (m2)

2 + 2E (~q1 )m2

t = (q1 − q3)
2 = 2 (m1)

2 − 2E (~q1 )E (~q3 ) + 2~q1 · ~q3

= 2 (m1)
2 − 2E (~q1 )E (~q3 ) + 2 |~q1 | |~q3 | cos (ϑlab)

u = (q2 − q3)
2 = (m1)

2 + (m2)
2 − 2m2E (~q3 ) . (72)

Also using formula (62), we find for t

t = 2m1 + 2m2 − s− u = 2m2 (E (~q3 )−E (~q1 )) . (73)

One defines the kinetic energy of the incoming particle by

T1 = E (~q1 ) − m1 . (74)

At threshold, where ~q1 = 0, we obtain T1 = 0.
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Part II

Generalities

7 Covariant and contravariant components

In a vector space of N dimensions we define an arbitrary set of basis vectors,

ei , i = 1, . . . , N , (75)

and their innerproducts, given by

ei · ej = g
ij

, i, j = 1, . . . , N . (76)

An arbitrary vector v in this N -dimensional vector space may be characterized by its com-

ponents, vi, on the basis (75), as follows

v = viei , (77)

where, as usually, repeated indices imply summation.
Using expression (76), we obtain for the innerproduct of two vectors the result

v ·w = viwjei · ej = g
ij
viwj . (78)

The vector v of formula (77) might equally well be characterized by its innerproducts with
the basis vectors (75). For this purpose we define

vi = v · ei . (79)

There exits of course a relation between the two quantities vi and vi, defined in formulas
(77) and (79) respectively. Also using definition (76), we obtain for that relation the following
result

vi = v · ei = vjej · ei = g
ij
vj . (80)

Since we are free to choose any basis in the N -dimensional vector space under consideration,
let us select a basis {a}, which is related to the basis (75) by a nonsingular transformation A
given by

aj = Aj
i ei and ei =

(

A−1
)

i

j
aj . (81)

The vector v defined in formula (77) has new components, say v′j , at the new basis {a}. A
relation between the two sets of components is, by the use of the transformations (81), readily
found, trough the relation

v′
j
aj = v = viei = vi

(

A−1
)

i

j
aj ,

to yield
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v′
j

= vi
(

A−1
)

i

j
. (82)

We find thus that the components of a vector transform with the inverse of the transformation
of the basis elements, for which reason those components are said to be contra-variant.

The components of v which are defined in formula (79) transform under the basis transfor-
mation (81) as follows

v′j = v · aj = v ·Aji ei = Aj
i vi . (83)

Aparantly, the quantities (79) transform in the same way as the basis vectors, for which reason
they are said to be covariant.

The inverse transformation is for the contravariant components given by

vi = v′
j
Aj

i , (84)

as, by the use of the transformation property (82) for contravariant components and the usual
rules for the components of products of transition matrices, can easily be seen from

v′
j
Aj

i = vk
(

A−1
)

k

j
Aj

i = vk
(

A−1A
)

k

i
= vkδik = vi .

An arbitrary point P in the N -dimensional vector space under consideration can be charac-
terized by the components {x} of its position vector x(P ), with respect to the basis {e} which
is defined in formula (75), but equally well by the components {x′} with respect to the basis
{a} defined in formula (81), according to

x(P ) = xiei = x′jaj . (85)

Relations between both sets of coordinates {x} and {x′} are, according to formulas (82) and
(84), given by

x′j = xi
(

A−1
)

i

j
and xi = x′jAj

i . (86)

Such relations might also be seen as the definitions of the basis transformations (81). Moreover,
the relations (86) are linear relations between the two sets of coordinates and hence it follows

∂x′j

∂xi
=
(

A−1
)

i

j
and

∂xi

∂x′j
= Aj

i , (87)

such that we also obtain

x′j = xi
∂x′j

∂xi
and xi = x′j ∂xi

∂x′j
. (88)
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8 The metrical tensor

The object g which is defined in formula (76), will be given the name metrical tensor. We study
in this section its transformation rules under a coordinate transformation of the form (88).

From relations (76) and (81) one obtains for the metric g′ at the {a} basis, the transformation
rule

g′
kℓ

= ak · aℓ = Ak
iAℓ

jei · ej = Ak
iAℓ

jg
ij

,

which upon substitution of relation (87) takes the form

g′
kℓ

=
∂xi

∂x′k
∂xj

∂x′ℓ
g
ij

. (89)

Relation (89) is one of the basic relations in differential geometry.
The components of the inverse of the metrical tensor are denoted with upper indices, ac-

cording to

(

g−1g
)i

j
= g

ik
g
kj

= δ
i

j
. (90)

Those components transform under the coordinate transformation (88) as follows

g′
kℓ

=
∂x′k

∂xi
∂x′ℓ

∂xj
g
ij

. (91)

Notice, that by the definition (76) both the metric tensor and its inverse are symmetric in their
indices.
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9 Local basis

In this section we consider an orthonormal basis {e} in an N -dimensional Euclidean space and
associated with it a set of coordinates {x}. The inner product of the basis vectors (or the
metric of the space) is then given by

ei · ej = δij , (92)

and any point P in space by its components, according to

x(P ) = xiei . (93)

As an example consider ordinary three-dimensional space. For the three basis vectors we
select for our example e1 = x̂, e2 = ŷ and e3 = ẑ, whereas for the coordinates we take x,
y and z.

Now, in this space we select a different set of coordinates {x′}, such that each point in the
vector space can uniquely be described by those coordinates. This means in general that there
exists relations between the two sets of coordinates {x} and {x′} which are sufficiently well
behaved, such that we may take as many derivatives as we need in the following.

Take as an example the set of spherical coordinates r, ϑ and ϕ which are related to the
ordinary 3D coordinates, x, y and z, by
x = x(r, ϑ, ϕ) = r sin(ϑ) cos(ϕ), y = y(r, ϑ, ϕ) = r sin(ϑ) sin(ϕ) and
z = z(r, ϑ, ϕ) = r cos(ϑ).

Associated with the set of coordinates {x′} we choose at each point of our space a new local
basis {u(x′(x))}, which basis serves for measurements in the direct vicinity of the point under
consideration, but has no meaning at a global level. The transformations which relate the
global basis {e} and the local basis {u(x′(x))}, are given by

uj(x
′) =

∂xi

∂x′j
ei and ei =

∂x′j

∂xi
uj(x

′) . (94)

For the 3D spherical coordinates, we obtain for a local basis the r̂, ϑ̂ and ϕ̂ unit vectors:
r̂(r, ϑ, ϕ) = {x̂ cos(ϕ) + ŷ sin(ϕ)} sin(ϑ) + ẑ cos(ϑ),
ϑ̂(r, ϑ, ϕ) = r [{x̂ cos(ϕ) + ŷ sin(ϕ)} cos(ϑ)− ẑ sin(ϑ)] and
ϕ̂(r, ϑ, ϕ) = r [−x̂ sin(ϕ) + ŷ cos(ϕ)] sin(ϑ).
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10 The metric of the local coordinates

The metric g of the new coordinates is, by analogy of formula (76), determined by the inner
products of the local basis vectors. Using formulas (92) and (94), one finds

g
kℓ
(x′) = uk(x

′) · uℓ(x′) =
∂xi

∂x′k
∂xj

∂x′ℓ
δij , (95)

whereas, as in formula (91), for the inverse metric follows

gkℓ(x′) =
∂x′k

∂xi
∂x′ℓ

∂xj
δij . (96)

For the 3D spherical coordinates, we find for the metric

g(r, ϑ, ϕ) =













grr grϑ grϕ

gϑr gϑϑ gϑϕ

gϕr gϕϑ gϕϕ













=













r̂ · r̂ r̂ · ϑ̂ r̂ · ϕ̂

ϑ̂ · r̂ ϑ̂ · ϑ̂ ϑ̂ · ϕ̂

ϕ̂ · r̂ ϕ̂ · ϑ̂ ϕ̂ · ϕ̂













=













1 0 0

0 r2 0

0 0 r2 sin2(ϑ)













(97)

11 Differentiation with respect to the local basis

For differentiation with respect to the local coordinates we introduce a new notation, in order
to simplify the formulas to come. We write:

F (x′), i =
∂F (x′)

∂x′i
. (98)

In this new notation we may cast, for example, expression (95) for the local metric, in the form

gkℓ(x
′) = δij xi, k xj, ℓ . (99)

Notice however, that for the transformation (96) the notation remains as it was.
For double derivatives we have two alternatives, one of which is more compact and will be

used in this notes, i.e.

F (x′), ij = F (x′), i, j =
∂2F (x′)

∂x′i∂x′j
. (100)

Since differentation does not depend on the order, one has moreover that

F (x′), ij = F (x′), ji .
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12 Christoffel symbols (affine connection)

In this section we study how the local basis vectors change if we move in space from one place
to the other. It might be clear that the variations of the local basis vectors in such a process
are completely determined once we know the derivatives of these vectors in each point. So,
we restrict ourselves to infinitesimal small variations in space. Moreover, we may assume that
the derivative of one of the local basis vectors can be expressed as a linear combination of the
complete local basis, since locally the latter form a complete basis. The coefficients of such
expression are called affine connections, symbol Γ. The relation is, by the use of the notation
defined in formula (98), given by:

uj(x
′)
, i

= Γ
k

ij
(x′) uk(x

′) . (101)

In order to express the Γ’s in terms of derivatives, let us, also using formulas (94) and (100),
consider the following expression

uj(x
′)
, i

=
(

xℓ, j eℓ

)

, i
= xℓ, ij eℓ = xℓ, ij

∂x′k

∂xℓ
uk(x

′) ,

from which we, by comparing with formula (101), deduce the identity

Γ
k

ij
(x′) = xℓ, ij

∂x′k

∂xℓ
. (102)

Notice that the affine connection is symmetric in the lower indices, since differentation is, i.e.

Γ
k

ij
(x′) = Γ

k

ji
(x′) . (103)

The non-zero components of the affine connections for the 3D spherical coordinates, are
the following

Γ
r

ϑϑ
= xℓ, ϑϑ

∂r

∂xℓ
= −r sin(ϑ) cos(ϕ)

x

r
− r sin(ϑ) sin(ϕ)

y

r
− r cos(ϑ)

z

r
= −r ,

Γ
r

ϕϕ = xℓ, ϕϕ
∂r

∂xℓ
= −r sin(ϑ) cos(ϕ)

x

r
− r sin(ϑ) sin(ϕ)

y

r
= −r sin2(ϑ) ,

Γ
ϑ

ϕϕ = xℓ, ϕϕ
∂ϑ

∂xℓ
= −r sin(ϑ)

x cos(ϕ) + y sin(ϕ)

r2
√
x2 + y2

z = − cos(ϑ) sin(ϑ) ,

similarly

Γ
ϑ

rϑ =
1

r
= Γ

ϑ

ϑr , Γ
ϕ

rϕ =
1

r
= Γ

ϕ

ϕr , Γ
ϕ

ϑϕ =
cos(ϑ)

sin(ϑ)
= Γ

ϕ

ϕϑ (104)
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13 The relation between the affine connection and the

metric

For completeness, we repeat here the derivation of the relation between the metrical tensor (95)
and the affine connection (102).

First, we determine the derivative of the components of the metrical tensor with respect to
the local coordinates

g
ij
(x′)

, k
=
(

δℓm xℓ, i x
m
, j

)

, k
= δℓm xℓ, ik xm, j + δℓm xℓ, i x

m
, jk .

Next, we notice that if we take a linear combination of the above expression for the derivatives,
obtained by permuting the indices (i, j, k), then we can single out one term, according to

Γ
kij

=
1

2

{

gki, j + gkj, i − gij, k

}

= δℓm xℓ, ij xm, k . (105)

The above quantities are the Christoffel symbols, which can be related to the affine connec-
tions (102), also using formula (96), by

gkℓ Γℓij =
∂x′k

∂xp
∂x′ℓ

∂xq
δpq δmn xm, ij xn, ℓ

=
∂x′k

∂xp
δpq δnq δmn xm, ij = Γ

k

ij . (106)

Using the metrical tensor which is given in formula (97), we obtain for the non-zero
components of the affine connections for the 3D spherical coordinates, the following

Γ
r

ϑϑ
= g

rr
Γ
rϑϑ

= −r , Γ
ϑ

rϑ
= Γ

ϑ

ϑr
= g

ϑϑ
Γ
ϑrϑ

=
1

r
,

Γ
r

ϕϕ
= g

rr
Γ
rϕϕ

= −r sin2(ϑ) , Γ
ϕ

rϕ
= Γ

ϕ

ϕr
= g

ϕϕ
Γ
ϕrϕ

=
1

r
,

Γ
ϑ

ϕϕ = g
ϑϑ

Γϑϕϕ = − sin(ϑ) cos(ϑ) , Γ
ϕ

ϑϕ = Γ
ϕ

ϕϑ = g
ϕϕ

Γϕϑϕ =
cos(ϑ)

sin(ϑ)
.

(107)
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14 The derivatives of a vector field

Suppose that in the N -dimensional Euclidean space (92) is defined an arbitrary vector field
v(x). With respect to the global Cartesean basis {e} let its components in some point P ,
which has coordinates x, be given by

v(x) = vi(x) ei , (108)

and with respect to the local basis u(x′) at P , which has coordinates x′ in the corresponding
coordinate system, by

v (x(x′)) = v′
i
(x′) ui(x

′) . (109)

In the vicinity of the point P one might wish to determine the derivatives of the vector field
with respect to the local coordinates. However, since the local basis vectors u differ from place
to place, also their derivatives will be involved, i.e.

v, i =
(

v′
k
uk

)

, i
= v′

k
, i uk + v′

j
uj, i ,

which, by the use of (101), leads to

v, i =

{

v′
k
, i + v′

j Γ
k

ij

}

uk . (110)

Another quantity of interest is the covariant component of the derivative of the vector field.
Using the definition (83) of the covariant component of a vector and formula (101), one obtains

v, j · ui =
(

v · ui
)

, j
− v · ui, j

= v′i, j − Γ
k

ij
v · uk = v′i, j − Γ

k

ij
v′k . (111)

15 Covariant derivative

It is common practice to introduce a new notation for the components of the derivative of a
vector field with respect to the local basis. Using the result (110), we write for those components

v, i = v′
k
; i uk with v′

k
; i = v′

k
, i + Γ

k

ijv
′j , (112)

and which are sometimes called the covariant derivative of the contravariant components of a
vector field.

For the covariant components of a vector field, using the result (111), we write similarly its
covariant derivatives by

v′i; j = v, j · ui = v′i, j − Γ
k

ijv
′

k . (113)
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Part III

Three dimensions
In the following, we study curves and surfaces in three dimensions.

16 Curves in three dimensions

In the case N = 3, the basis vectors {e} and the coordinates {x} represent the well-known
Cartesean coordinates in three dimensions. In that space we parametrize an arbitrary curve by
a real parameter t, such that when one moves along the curve, t changes in a continuous way
from one real value to the other. Now, in formula (93) we characterized one point x in space
by its coordinates {x} at the basis {e}. Similarly, we characterize here a whole curve by letting
the coordinates depend continuously on the parameter t, i.e.

x(t) = xi(t) ei . (114)

Specific curves can be characterized by the adequate choice for the three functions of t, x1(t),
x2(t) and x3(t). We will here only allow for curves for which those three functions are infinitely
many times differentiable as functions of t.

The tangent vector in an arbitrary point of the curve is given by the first derivative in t of
the curve

ẋ(t) =
dx(t)

dt
=

dxi(t)

dt
ei = ẋi(t) ei . (115)

Its length is evidently related to the usual expression of the square of the length of a vector
(remember that we have an orthonormal basis {e} here):

|ẋ(t)|2 = ẋ(t) · ẋ(t) = ẋi(t)ẋj(t) δij . (116)

This quantity can also be used to measure a distance s2 − s1 of a line segment along the
curve. Clearly, one must therefor integrate over the interval (t1, t2) in the parameter t which
corresponds to that segment. We find then

s2 − s1 =
∫ t2

t1
dt |ẋ(t)| =

∫ t2

t1
dt

√

ẋi(t)ẋj(t) δij . (117)

From the above expression one may deduce that an infinitesimal distance ds is determined
by

ds2 = dxi dxj δij . (118)

Now, since the parameter s, which is called the proper length along the curve, is a more con-
venient parametrization of the curve, than an arbitrary choice, we will use in the following s
as the parameter along the curve. Derivatives with respect to s will be denoted by a prime,
instead of a dot (not to be confused with the notation for a new coordinate set as defined in
section (9), but that might be clear from the context).

So, expressed in the proper length parameter s, the curve is now characterized by
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x(s) = xi(s) ei , (119)

and its tangent vector by

τ (s) = x′(s) =
dxi(s)

ds
ei . (120)

Notice, that, by our choice (118) of parametrization, the tangent vector τ (s) has unit length
in any point of the curve. This can also be seen as follows:

|τ (s)|2 =
dxi(s)

ds
ei · dxj(s)

ds
ej =

dxi(s)

ds

dxj(s)

ds
δij =

dxidxjδij
ds2

=
ds2

ds2
= 1 .

(121)

For a first example, let us consider a circle of radius R in the (x, y)-plane, centered at
the origin. We parametrize a point, P , of the circle by the angle, t, its position vector,
xP , makes with the x-axis. Below we write our parametrization, x(t), of the position
vectors of points at the circumference of the circle and their related tangent vectors, ẋ(t),
respectively:

x(t) =







R cos(t)
R sin(t)

0





 and ẋ(t) =







−R sin(t)
R cos(t)

0





 .

The length of the tangent vector equals R. For the length of a line segment of the curve,
we find

s2 − s1 =
∫ t2

t1
dt R = R (t2 − t1) ,

from which we deduce that for the proper length parameter we may select s = Rt. In this
parametrization we have then

x(s) =







R cos(s/R)
R sin(s/R)

0





 and τ (s) = x′(s) =







− sin(s/R)
cos(s/R)

0





 . (122)

Notice that x′(s) has unit length.

29



For a second example, we study a circular helix, or screw, of radius a and constant speed
b centered around the z-axis. For the parametrization of the position vectors, x(t), of
points at this curve and their related tangent vectors, ẋ(t), we choose respectively:

x(t) =







a cos(t)
a sin(t)

bt





 and ẋ(t) =







−a sin(t)
a cos(t)

b





 .

The length of the tangent vector equals
√
a2 + b2. For the length of a line segment of the

curve, we find

s2 − s1 =
∫ t2

t1
dt

√
a2 + b2 =

√
a2 + b2 (t2 − t1) ,

from which we deduce that for the proper length parameter we may select s =
√
a2 + b2t.

In this parametrization we have then

x(s) =



















a cos
(

s√
a2 + b2

)

a sin
(

s√
a2 + b2

)

bs√
a2 + b2



















and τ (s) =



















−a√
a2 + b2

sin
(

s√
a2 + b2

)

a√
a2 + b2

cos
(

s√
a2 + b2

)

b√
a2 + b2



















.

(123)
Notice that x′(s) has unit length.
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17 The natural local basis of a curve

In this section we will construct a set of three vectors at each point P (s) along the curve, which
serves as a local basis for the Euclidean three-dimensional space in the vicinity of P (s).

The first vector of this set is the unit tangent vector τ (s), defined in formula (120). For the
second vector one may select the derivative of the tangent vector, normalized to unity

h(s) =

dτ (s)
ds

∣

∣

∣

∣

dτ (s)
ds

∣

∣

∣

∣

. (124)

The tangent vector τ (s) and its derivative τ ′(s) are orthogonal in any point of the curve, as
can be seen, also using formula (121), from

0 =
d1

ds
=

d {τ (s) · τ (s)}
ds

= 2 τ ′(s) · τ (s) . (125)

The variation of the tangent vector along the curve in the vicinity of a point P (s) indicates
the amount of curvature of the curve at that point. In order to see this more explicitly, let us
determine the difference between the tangent vector at the point P (s) and the tangent vector
at the point P (s+∆s). To first order this difference is given by

τ (s+∆s) − τ (s) ≈ τ ′(s) ∆s . (126)

Now, since the tangent vectors have unit length, the modulus of the above difference yields,
also to first order, the angle α(s) between the two vectors at location P (s), i.e.

|τ (s+∆s) − τ (s)| ≈ α(s) . (127)

Moreover, the curvature radius of the curve at location P (s) multiplied by the angle α(s) equals
the distance along the curve between the two points P (s) and P (s+∆s). Whereas, furthermore
the length of this line segment equals ∆s, since the parametrization (119) corresponds to the
length of line segments on the curve. Hence, one finds

|∆s| ≈ α(s)

κ(s)
, (128)

where κ(s) stands for the inverse of the radius of curvature at location P (s). The choice to
parametrize curvature by the inverse of the radius, rather than by the radius itself, is quite
logical, since then one has vanishing parameter in the absence of curvature.

Now, by joining the three pieces (126), (127) and (128), we obtain the relation

|∆s| ≈ α(s)

κ(s)
≈ |τ (s+∆s) − τ (s)|

κ(s)

≈ |τ ′(s)| |∆s|
κ(s)

,

from which we consequently may conclude that the derivative of the tangent vector (120) and
the normalized derivative (124), are related via the parameter of local curvature, by
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τ ′(s) = κ(s) h(s) . (129)

The third vector b(s) of the natural local basis at P (s) is given by the outer product of τ (s)
and h(s), i.e.

b(s) = τ (s) × h(s) . (130)

Since both τ (s) and h(s) are unit vectors and moreover orthogonal, it is clear from the
definition (130) that also b(s) must be unity. Hence, the natural local basis vectors τ (s), h(s)
and b(s) form an orthonormal set.

For the circle of example (122) we obtain for the derivative of the tangent vector

τ ′(s) =















− 1
R cos(s/R)

− 1
R sin(s/R)

0















and κ(s) = |τ ′(s)| =
1

R
, (131)

which leads for h(s) and b(s) to

h(s) =







− cos(s/R)
− sin(s/R)

0





 and b(s) =







0
0
1





 = ẑ . (132)

For the circular helix of example (123) we obtain for the derivative of the tangent vector

τ ′(s) =
a

a2 + b2















− cos
(

s√
a2 + b2

)

− sin
(

s√
a2 + b2

)

0















and κ(s) = |τ ′(s)| =
a

a2 + b2
. (133)

Notice that in the limit b = 0, we return to the case of the circle for R = a. In the limit
of b → ∞ one has a straight line parallel to the z-axis with vanishing curvature.
For h(s) and b(s) one has for the circular helix

h(s) =















− cos
(

s√
a2 + b2

)

− sin
(

s√
a2 + b2

)

0















and b(s) =
1√

a2 + b2















b sin
(

s√
a2 + b2

)

−b cos
(

s√
a2 + b2

)

a















.

(134)
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18 The derivatives of the natural basis

Knowledge of the derivatives of the natural local basis vectors τ (s), h(s) and b(s) informs us
about the development of this basis for displacements along the line. Below, we show that these
derivatives are given by the Frenet relations:

τ ′(s) = κ(s) h(s) , κ(s) = |τ ′(s)| ;

h′(s) = −κ(s) τ (s) + σ(s)b(s) , σ(s) = |τ (s)× h′(s)| ;

b′(s) = −σ(s) h(s) .

(135)

In the proof of the Frenet relations we use the fact that the derivative of a unit vector is always
perpendicular to the unit vector itself (see formula 125). Moreover, we know that by their
definitions (120), (124) and (130), τ (s), h(s) and b(s) are unit vectors (see also formula 121).
Hence, the derivatives τ ′(s), h′(s) and b′(s) are perpendicular to respectively τ (s), h(s) and
b(s).

18.1 Proof of the Frenet relations

The relation between τ ′(s) and h(s) has been studied in section (17), where also the definition
of the curvature parameter κ(s) has been given.

For the proof of the third line in formula (135), we remember that both τ (s) and h′(s) are
perpendicular to h(s). Hence, their outer product is parallel to h(s). Using definition (130)
and formula (129), we find then

b′(s) = τ ′(s) × h(s) + τ (s) × h′(s) = τ (s) × h′(s) ,

which is a vector parallel and opposite to h(s). Moreover, since h(s) is unity, one obtains

− |b′(s)| = − |τ (s) × h′(s)| ,

for the constant of proportionality −σ(s). Which proofs the third of the Frenet relations.
For the second relation, we just study the innerproducts of h′(s) with τ (s) and b(s), since

the natural basis is orthonormal at each point P (s) of the curve. Using formulas (125) and the
first relation of Frenet, we obtain

0 =
d {τ ′(s) · τ (s)}

ds
= τ ′′(s) · τ (s) + τ ′(s) · τ ′(s) = τ ′′(s) · τ (s) + κ2(s) ,

which leads to

h′(s) · τ (s) =

(

d

ds

τ ′(s)

κ(s)

)

· τ (s) =

{

−κ′(s)
τ ′(s)

κ2(s)
+

τ ′′(s)

κ(s)

}

· τ (s) = −κ(s) , (136)

which proofs the first part of the second Frenet relation.
For the second part, we use the fact that h(s) and b(s) are perpendicular and the third

Frenet relation, resulting to

h′(s) · b(s) =
d {h(s) · b(s)}

ds
− h(s) · b′(s) = σ(s) , (137)

which proofs the second part of the second Frenet relation and, hence, completes the proof of
the Frenet relations.
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18.2 Darboux vector

For completeness, we study here the variation of the natural local basis vectors τ (s), h(s)
and b(s) for displacements along the curve. We will find that those vectors rotate around the
so-called Darboux vector, defined by

d(s) = σ(s) τ (s) + κ(s) b(s) . (138)

Under a small displacement ∆s along the curve one may write, to first order, the transfor-
mation of the natural local basis vectors, by













τ (s+∆s)

h(s+∆s)

b(s+∆s)













≈













τ (s)

h(s)

b(s)













+













τ ′(s)

h′(s)

b′(s)













∆s ,

which, using formula (135), can be casted in the form













τ (s+∆s)

h(s+∆s)

b(s+∆s)













≈













τ (s)

h(s)

b(s)













+













· κ(s) ·
−κ(s) · σ(s)

· −σ(s) ·

























τ (s)

h(s)

b(s)













∆s .

The matrix in the above expression represents an infinitesimal rotation around the so-called
Darboux vector, which is given in formula (138), whereas the angle of the infinitesimal rotation
follows from

rotation angle ≈ |d(s)|∆s =
√

σ2(s) + κ2(s) ∆s . (139)

When passing from one position to a nearby position along the curve, the natural basis
vectors, while remaining a righthand orthonormal set, changes its orientation following the
above described rotation.
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19 A two-dimensional surface in three dimensions

In the following, we study a two-dimensional arbitrarily curved surface embedded in a three-
dimensional Euclidean space. The three-dimensional space we endow with a set of orthonormal
basis vectors {e} and coordinates {x}. We assume that the two-dimensional surface is char-
acterized by a set of two coordinates, {u}. This means that we assume that each point P in
the surface is associated with a unique set of two coordinates u1 and u2. We assume moreover
that those coordinates vary in a continuous way when one moves from one place to a nearby
position. The components of the three-dimensional vectors x(P ) which connect the origin of
the three-dimensional embedding space to points P on the surface, are this way functions of
the two coordinates which characterize the surface, i.e.

xP

(

u1, u2
)

= xi
(

u1(P ), u2(P )
)

ei = xi(u) ei . (140)

We assume then that the three functions xi(u) are infinitely many times differentiable func-
tions of the variables u1 and u2.

Now, at each point of the surface we can define a tangent plane by selecting two vectors which
uniquely characterize this plane. Such local tangent basis vectors can be constructed from the
three-dimensional vectors associated to the points on the surface, since their derivatives with
respect to the surface coordinates {u} indicate locally the tangent directions, i.e.

aα(u) = x(u), α =
∂xi(u)

∂uα
ei . (141)

where α = 1 or 2, and where i runs over 1, 2 and 3.
Notice that we indicate here with a comma differentation with respect to the arbitrary surface

coordinates {u}, since we consider those the local coordinates of the two-dimensional surface
(compare section 11).

With the difference that here we denote the coordinates by {u} and the local basis vectors
by {a}, we can use formula (95) in order to determine the local metric in the vicinity of any
point P . We obtain in general

gαβ(u) = aα(u) · aβ(u) = x(u), α · x(u), β = xi, α xj, β δij . (142)

Being useful later on, we complete here the set of local basis vectors by a third unit vector,
normal to the plane, which thus allows for the description of points outside the two-dimensional
surface in the vicinity of a point P on the surface. We define therefor

n(u) =
a1(u)× a2(u)

|a1(u)× a2(u)|
. (143)

By the use of formula (141) we may rewrite the outer product of the above expression as follows:

a1(u)× a2(u) = xi,1 x
j
,2 ei × ej = xi,1 x

j
,2 ǫijkek . (144)

Where, ǫ
ijk

represents the Levi-Civita symbol, which has the following property

ǫ
ijk

ǫ
ℓmk

=
3
∑

k=1

ǫ
ijk

ǫ
ℓmk

= δiℓδjm − δimδjℓ . (145)
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Using this equality and the expression (142), we find for the square of the modulus of the outer
product (144) the result

|a1(u)× a2(u)|2 = xi,1 x
j
,2 ǫijk ek · xℓ,1 x

m
,2 ǫℓmn en

= |x,1|2 |x,2|2 − (x,1 · x,2)
2

= g
11

(u) g
22

(u) − g
12

(u) g
21

(u)

= det (metrical tensor) = g(u) . (146)

Using this result, we obtain for the local normal vector (143) the form

n(u) =
a1(u)× a2(u)

√

g(u)
. (147)

Notice, as may be obvious, that

n(u) · a1(u) = n(u) · a2(u) = 0 . (148)

Also for later use we determine here the innerproduct of the local normal vector and an
arbirary three-vector, i.e.

√

g(u)v · n(u) = vi xj ,1 x
k
,2 ǫjkℓ

eℓ · ei = v · (x,1 × x,2) . (149)
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20 The derivatives of the local basis

In this section we study the derivatives of the local basis on the two-dimensional surface with
respect to the local coordinates {u}. It is worthwhile to notice from the start that, because of
the way the tangent vecors {a} are defined in formula (141), one has that

aα, β(u) = x(u), αβ , (150)

is symmetric in the indices α and β.
From formula (142) we deduce that

g
αβ, µ

(u) = aα, µ(u) · aβ(u) + aα(u) · aβ, µ(u)

= x(u), αµ · x(u), β + x(u), α · x(u), βµ ,

for which, moreover using expression (105), we obtain for the Christoffel symbols of the two-
dimensional surface the expression

Γ
µαβ

(u) =
1

2

{

gµα, β + gµβ, α − gαβ, µ

}

= x, αβ(u) · x, µ(u) = aα, β(u) · aµ(u) . (151)

In order to determine the affine connections from formula (102), we need moreove the inverse
of the local metric in the two-dimensional surface, the components of which we denote here
with upper indices as before (see formula 90). We write then

Γ
µ

αβ(u) = gµσ(u) Γ
σαβ

(u) . (152)

Now, let us write for the derivative of a local tangent vector (141), the following decompo-
sition in terms of the three local basis vectors

aα, β = A
µ

αβ
aµ + B

αβ
n .

The coefficients A
µ

αβ
are readily determined by the use of formulas (79), (80), (90), (151), (152)

and (148). One obtains

A
µ

αβ
= δ

µ

ν
A
ν

αβ
= g

µσ
g
σν

A
ν

αβ
= g

µσ
aσ · aν A

ν

αβ

= g
µσ

aσ · aα, β = g
µσ

Γσαβ = Γ
µ

αβ .

Remembering that the local unit normal vector n is normal to both local tangent vectors, we
define here the torsion tensor L by

Lαβ(u) = aα, β(u) · n(u) = Bαβ . (153)
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Notice, that because of property (150) the torsion tensor is symmetric in its indices. Further-
more, by the use of formulas (141) and (149), we may cast the expression (153) in the following
form

Lαβ(u) = x, αβ(u) · n(u) = x, αβ(u) · x,1(u)× x,2(u)
√

g(u)
. (154)

We obtain then for the decompostion of the derivative of the local tangent vectors, the
expression

aα, β(u) = Γ
µ

αβ
(u) aµ(u) + Lαβ(u) n(u) . (155)

For the derivatives of the local normal we first remember that n is a unit vector, which
according to formula (125) implies that n is perpendicular to its derivative and hence only has
components in the tangent plane. Let

n, α = N
β

α
aβ ,

then, using once more formulas (79) and (80), and moreover definition (153), one deduces

N
β

α
= g

βν
N
να

= g
βν

n, α · aν = g
βν {

(n · aν), α − n · aν, α
}

= −g
βν

n · aν, α = −g
βν

L
να

.

Hence,

n, α(u) = −g
βν

Lνα aβ(u) . (156)
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21 Curves on the surface

As we have seen before, in section (16), we give the name curve to a one-dimensional subspace,
which is continuous and thus can be parametrized by real numbers and which moreover is
differentiable, as many times as we desire. What we have in mind here is something like a
smooth line drawn with an infinitesimally sharp pencil on a piece of paper. Furthermore, what
we actually only needed from those curves is a small segment in the neighbourhood of a well
defined point of space, as explored in section (17).

A curve embedded in the two-dimensional surface defined in section (19), can obviously be
parametrized by a parameter, t, such that the surface coordinates, u, which indicate points
of the curve, become functions, u(t), of t. We consider here curves in the surface which are
infinitely many times differentiable.

A curve at the two-dimensional surface is thus charaterized by

x(t) = x(u(t)) = xi(u(t))ei . (157)

The tangent to the curve at the point P (t) is, by the use of equation (141), given by

ẋ(t) =
duα

dt
xi, α(u(t))ei =

duα

dt
aα(u(t)) . (158)

Expression (158) shows nicely the fact that the vectors {a(u)} span locally the complete
tangent space, as indeed an arbitrary tangent vector, tangent to an arbitrary curve in the
surface, can be written as a linear combination of the vectors (141).

In section (16) we introduced the notion of the proper length, which we denoted by s (see
formula 118) and which measures distances of line segments along the curve by means of the
integral over the lengths of infinitesimal line elements in the directions of the local tangent
vectors of the curve. Here, we repeat this procedure.

The length of the local tangent vector (158) is here, by the use of formula (142), given by

|ẋ(t)|2 =
duα

dt

duβ

dt
aα(u(t)) · aβ(u(t)) =

duα

dt

duβ

dt
gαβ(u(t)) . (159)

So, following the procedure of section (16), we obtain for the proper length of the above defined
curve the expression

ds2 = duα duβ gαβ(u(t)) . (160)

Clearly, we were up to introduce the proper length s for parametrizing the curve.
As before (see section 16), we define here the local unit tangent vector τ at the point P (s)

by

τ (s) = x′(u(s)) =
duα

ds
aα(u(s)) . (161)

Notice that, since τ (s) has unit length and is, moreover, a vector in the tangent plane of the
surface at point P (s), all curves which have at P (s) the same tangential direction, share the
same tangent vector τ (s) when parametrized by their proper lengths. Furthermore

1 = |τ (s)|2 = |x′(u(s))|2 =
duα

ds

duβ

ds
g
αβ

(u(s)) . (162)
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In section (17) we saw that the variations of the local tangent vector for small displacements,
measure the curvature of the curve. From equation (161), also using formula (155) for the
derivatives of the local basis vectors, we obtain for the derivatives of the local tangent vector
the following

τ ′(s) =
d2uα

ds2
aα(u(s)) +

duα

ds
aα

′(u(s)) (163)

=
d2uα

ds2
aα(u(s)) +

duα

ds

duβ

ds
aα, β(u)

=
d2uα

ds2
aα(u(s)) +

duα

ds

duβ

ds

{

Γ
µ

αβ
(u) aµ(u) + Lαβ(u) n(u)

}

=







d2uµ

ds2
+ Γ

µ

αβ
(u)

duα

ds

duβ

ds







aµ(u) + Lαβ(u)
duα

ds

duβ

ds
n(u) .

which is in general neither a vector of the tangent plane, tangent to the surface at P (s), nor a
vector normal to that plane.

A quantity of interest is the innerproduct of the local normal, n(u(s)), normal to the tangent
plane, and τ ′(s). We find, using formula (163) and the fact that n(u(s)) is normal to the local
tangent vectors {a}, the following

τ ′(s) · n(u(s)) =
duα

ds

duβ

ds
Lαβ(u(s)) . (164)
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22 The curvature of the curves on the surface

In the previous section we studied the local tangent vectors, τ , tangent to curves on the two-
dimensional surface which pass at location P and their derivatives, τ ′. From expression (163) it
is clear that the derivatives are, in general, not normal to the local tangent plane. Furthermore,
by its definition (143), the local normal vector, n, normal to the local tangent plane, is unity.
Moreover, from section (17) we learn, as expressed in formula (129), that the length of the
derivative of the local tangent vector is equal to the inverse, κ, of the radius of curvature of the
curve at location P . Consequently, the innerproduct of τ ′ and n must be equal to κ times the
cosine of the angle, say ϑ, which the two vectors make. Also using formula (164), we obtain for
a specific curve, parametrized by its proper length parameter s, the following

k(curve) = κ cos(ϑ) = Lαβ(u(s))
duα

ds

duβ

ds
. (165)

From its definition (154), we must conclude that the torsion matrix does not depend on
a specific choice of curve at P on the two-dimensional surface, but only on the properties of
the surface itself at location P . Now, as discussed before (see the text following formula 161),
infinitely many curves on the surface share at P the same tangent vector τ . Consequently, when
we restrict ourselves to all curves whith the same tangential direction in P , which, according to
formula (161), means a particular choice for the two values of du/ds, then these curves share
the same value for the quantity k as defined in formula (165). The curvature, κ, of such class
of curves in P differs from one curve to the other. But, then also the angle ϑ is different for
each curve, in such a way that k is constant.

Hence, we may conclude that k is a function of the tangential direction only, not of a
particular choice of curve out of the above described class of curves at the point P . We write
therefor:

k = k(τ ) . (166)

Out of the class of curves which belong to a certain tangential direction, τ , we select one
representative: the curve which in the vicinity of P is defined by the cross section between
the two-dimensional surface and the plane defined by the local normal vector n and the local
tangent vector τ . For that curve, when parametrized by its proper length parameter s, τ ′(s)
must at P (s) be parallel (or antiparallel) to the normal vector, since it will not have a component
out of the above defined plane, when the curve is entirely inside that plane, and τ ′(s) also has
to be perpendicular to τ (s). This representative curve corresponds to a geodesic at the point
P , as we will see later on.

So, for a geodesic at P , we have from formula (165) the following result

ϑ = 0 or π , and k(τ (s)) = ± κ . (167)
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23 The curvature of the surface

From the previous section we learn that the radius of curvature, R(τ (s)), of the geodesic in the
direction τ (s) at location P , is given by

±1

R(τ (s))
= k(τ (s)) = Lαβ(u(s))

duα

ds

duβ

ds
. (168)

We have inserted the ± sign because at this stage it is not clear whether the angle ϑ of formula
(165) equals 0 or π for our choice of the local normal n(s).

By inspection of all possible tangent directions, we find that the corresponding values of k
have two extrema, which we denote by k1 and k2. We study this in the following. In order to
simplify the necessary algebra, we define

r =
du1

ds

(

du2

ds

)

−1

, (169)

L = L11(u) , M = L12(u) = L21(u) , N = L22(u) , (170)

and

E = g11(u) , F = g12(u) = g21(u) , G = g22(u) . (171)

When we substitute the above definitions (169- 171) in formula (168), using moreover relation
(162), then we obtain

k(τ ) =
Lαβ(u(s))

duα

ds
duβ

ds

gαβ(u(s))
duα

ds
duβ

ds

=
Lr2 + 2Mr + N

Er2 + 2Fr + G
. (172)

The parameter r, defined in formula (169), parametrizes the various directions of tangent vector.
So, apparantly, our problem is now reduced to finding the extrema of expression (172). At the
values of r, which we denote by ρ, for which those extrema occur, one has

dk

dr

∣

∣

∣

∣

∣

r = ρ
= 0 ,

which leads to the following quadratic equations for ρ

(a) (Lρ + M)
(

Eρ2 + 2Fρ + G
)

− (Eρ + F )
(

Lρ2 + 2Mρ + N
)

= 0 ,

(b) (FL − EM) ρ2 + (GL − EN) ρ + (GM − FN) = 0 ,

(c)

(

F
Lρ + M

Eρ + F
− M

)2

−
(

E
Lρ + M

Eρ + F
− L

) (

G
Lρ + M

Eρ + F
− N

)

= 0 .

When, next, we denote an extremum value for k by k̄, then we have, by substituting a solution
of the above equation in formula (172), the expression
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k̄ =
Lρ2 + 2Mρ + N

Eρ2 + 2Fρ + G
=

Lρ + M

Eρ + F
,

and its inverse relation

ρ = −F k̄ − M

Ek̄ − L
, (173)

which, when inserted in the quadratic equation (c) for ρ, leads to a quadratic equation for the
extrema of k, i.e.

(F k̄ − M)2 − (Ek̄ − L)(Gk̄ − N) = 0 . (174)

The equation (174) has in general two solutions, k1 and k2, which, also using formulas (170)
and (171), are characterized by

K = k1k2 =
LN −M2

EG− F 2 =
det(L)

det(g)
= det

(

g−1L
)

, (175)

and by

2H = k1 + k2 =
GL− 2FM + EN

EG− F 2 = gαβ Lαβ = Tr
(

g−1L
)

. (176)

It is common practice to define the curvature of the surface at a point P by the product
(175) of the two extremum values for k. The parameter H is called the average curvature at
P .

For the tangential direction parameters r1 and r2, which correspond respectively to the
extrema of curvature k1 and k2, we may proof the following relations:

Er1r2 + F (r1 + r2) + G = 0 and Lr1r2 + M (r1 + r2) + N = 0 . (177)

The proof of those relations is a matter of straightforward algebra: First, one substitutes relation
(173) for r1 and r2 and then one uses the expressions (175) and (176) to obtain relations (177).
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24 The local principle axes

The local principle axes of the surface at location P are defined by the local tangential directions,
τ 1 and τ 2, of those geodesics at P , which correspond to the extremum directions, r1 and r2,
for which k has respectively the extremum values k1 and k2.

In this section we study those axes as well as the dependence of k on τ at the basis τ 1 and
τ 2 for the local tangent plane.

According to its definition in formula (161) we may write an arbitrary tangent vector of
the tangent plane at P as a linear combination of the local tangent vectors (141). Also using
formulas (142), (169) and (171), we obtain

τ = N (ra1 + a2) (178)

with 1 = |τ |2 = N 2
{

Er2 + Fr + G
}

.

First, let us demonstrate that the principle axes are perpendicular, i.e.

τ 1 · τ 2 = 0 . (179)

Proof:

From formula (178) we deduce that the above innerproduct may be written in the form

τ 1 · τ 2 = N1N2 {Er1r2 + F (r1 + r2) + G} ,

for which, by the use of the first of relations (177), we find vanishing result, which completes
the proof.

Hence, τ 1 and τ 2 form an orthonormal basis for the local tangent plane at P . Their directions
are called the local principle axes. An arbitrary tangential direction, τ at P can thus be written
as

τ = τ 1 cos(ϕ) + τ 2 sin(ϕ) , (180)

where the angle ϕ defines the direction of τ with respect to the first principle axis.
The curvature of the geodesic in the direction of τ is characterized by k(ϕ) as defined in

(168). Its relation with k1 and k2 is given by

k(ϕ) = k1 cos
2(ϕ) + k2 sin

2(ϕ) . (181)

Proof:

We start from expression (178), to find for (180) the form

τ = N1 (r1a1 + a2) cos(ϕ) + N2 (r2a1 + a2) sin(ϕ)

= [N1r1 cos(ϕ) + N2r2 sin(ϕ)] a1 + [N1 cos(ϕ) + N2 sin(ϕ)] a2 .

By comparing this expression to equation (178), we conclude the following relations
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N r = N1r1 cos(ϕ) + N2r2 sin(ϕ) and N = N1 cos(ϕ) + N2 sin(ϕ) . (182)

The curvature parameter k for the tangential direction (180) can be obtained by substituting
the norm N of formula (178) into equation (172), to give

k = N 2
{

Lr2 + 2Mr +N
}

= L (N r)2 + 2MN (N r) +NN 2 , (183)

which, by substitution of moreover relations (182), leads to

k =
{

L (N1r1)
2 + 2MN1 (N1r1) +NN1

2
}

cos2(ϕ) +

+
{

L (N2r2)
2 + 2MN2 (N2r2) +NN2

2
}

sin2(ϕ) +

+ 2N1N2 {Lr1r2 +M (r1 + r2) +N} cos(ϕ) sin(ϕ) .

When we substitute here equation (183) for k1 in the first term and for k2 in the second
term, and moreover the second relation of formula (177) in the third term, then we obtain
result (181), which completes the proof.
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25 Egregium theorem of Gauss

Relation (175) for the curvature of the surface can be entirely expressed in terms of the metrical
tensor (142) and its derivatives, as we will study in this section.

In formula (155) we find the decomposition of the first derivatives of the local tangential
vectors {a(u)}, in terms of the two components in the local tangential plane and the component
perpendicular to that plane. For the innerproduct of two such objects, also using formula (142),
we find

a
α, β

(u) · a
τ, σ

(u) = Γ
µ

αβ
(u) Γ

ν

τσ
(u) aµ(u) · aν(u) + Lαβ(u) Lτσ(u) n(u) · n(u)

= Γ
µ

αβ(u) Γ
ν

τσ(u) gµν(u) + Lαβ(u) Lτσ(u) .

From this result we deduce that

Lαβ(u) Lτσ(u) = aα, β(u) · aτ, σ(u) − Γ
µ

αβ
(u) Γ

ν

τσ
(u) g

µν
(u) . (184)

Relation (184) gives us the possibility to express the determinant of the local torsion tensor as
follows

det(L) = L11 L22 − L12 L21 (185)

= a1,1 · a2,2 − a1,2 · a2,1 −
{

Γ
µ

11
Γ
ν

22
− Γ

µ

12
Γ
ν

21

}

gµν

As easily can be verified, for instance by taking the double derivatives of the local metrical
tensor (142) thereby remembering that aα, β = aβ, α (see definition 141 and formula 150),

that the first two terms at the righthand side of formula (185) can be expressed as a linear
combination of second order derivatives of the local metrical tensor, i.e.

a1,1 · a2,2 − a1,2 · a2,1 = −1

2

{

g
11,22

− 2g
12,12

+ g
22,11

}

,

Substitution of this result in formula (185) for the determinant of the local torsion tensor L,
leads for the local curvature parameter (175) to the following expression:

K =
det(L)

det(g)
=

1

g

[

−1

2

{

g
11,22

− 2g
12,12

+ g
22,11

}

−
{

Γ
µ

11
Γ
ν

22
− Γ

µ

12
Γ
ν

21

}

g
µν

]

(186)

This is an expression which only refers to the local surface coordinates {u1, u2} via the local
metrical tensor and its first and second order derivatives. As no reference to an embedding
space is involved, expression (186) uses only the inner properties of the surface for the definition
of curvature (Egregium theorem of Gauss).

Almost vanishing curvature is difficult to measure, as mankind struggled for millions of
years to detect signs of the curvature of the Earth’s surface and even then decided to only be
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really convinced after sailors made their trips around the Globe. However, those voyages were
not necessary as the Greek civilization already had knowledge of the curvature of the Earth’s
surface and rough estimates of its radius. The metrical tensor can be composed by precise
measurements on medium long distances and from that information alone, curvature can be
determined. This is the practical result of the work of Gauss, Bólyai and Lobachevski.
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26 The curvature tensor

Using the relation (155), we may determine the second derivatives of the local basis vectors
{a(u)} of the local tangent plane, i.e.

aν, ρσ = Γ
α

νρ, σ aα + Γ
α

νρ aα, σ + Lνρ, σ n + Lνρ n, σ .

When we take the innerproduct of this expression and one of the local tangential basis
vectors, then, also using formulas (142), (151) and (156), and the fact that n is normal to the
local tangent plane, then we obtain

aν, ρσ · aµ = Γ
α

νρ, σ gαµ + Γ
α

νρΓµασ
− Lνρ Lσµ .

When, next, we take the difference of the above equation with the same expression for ρ
and σ interchanged, then, also using the symmetry properties of the afine connection and the
Christoffel symbol, we find

Lνρ(u) Lσµ(u) − Lνσ(u) Lρµ(u) = Rµνρσ(u) , (187)

where the curvature is defined by

Rµνρσ(u) = gµα(u) R
α

νρσ(u) , (188)

and where

R
α

νρσ
= Γ

α

νρ, σ
− Γ

α

νσ, ρ
+ Γ

α

βσ
Γ
β

νρ
− Γ

α

βρ
Γ
β

νσ
. (189)

The curvature tensor (188) has the following symmetry properties:

R
µνρσ

= −R
µνσρ

R
µνρσ

= −R
νµσρ

Rµνρσ = 0 , for ρ = σ

R
µνρσ

= 0 , for µ = ν . (190)

With those symmetry relations, we have for the curvature tensor at a two-dimensional surface
only one independent nonzero element, i.e.

R1212 = −R1221 = R2121 = −R2112 . (191)

The local curvature scalar is in general defined by

R(u) = gµρ(u) gνσ(u) R
µνρσ

(u) . (192)

For a two-dimensional surface the only non-zero contributions come from the components
collected in formula (191), which results for the curvature scalar then in
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R(u) =
{

g11 g22 − g12 g21 + g22 g11 − g21 g12
}

R1212 .

So, using also formulas (175) and (187), we find for the local curvature scalar in two dimensions

R(u) = 2det
(

g−1
)

R1212 = 2det
(

g−1
)

(L21 L12 − L11 L22)

= −2det
(

g−1L
)

= −2K . (193)

For the extension to arbitrary dimensions one chooses the curvature scalar as defined in (192)
for the parameter which characterizes the deviation of the metrical space from Euclidean.
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27 Geodesics

As previously discussed in the context of the curvature of curves on the two-dimensional surface
embedded in Cartesian three dimensions (see section 22), one of the many curves which share
the same tangential direction, τ , at a certain location P of the surface, is the geodesic curve.
As before we denote the proper length at this curve by s. This curve is special, because its
related derivative of the tangential direction, τ ′(s), is parallel to the local normal, n(u(s)), of
the surface at point P (s) (see formula 167)

Since τ ′(s) is normal to the tangent plane in the case of a geodesic, the innerproduct of
τ ′(s) with the local tangent basis vectors {a} vanishes. Using formulas (142) and (163) and
the fact that n(u) is also normal to the tangent plane, we obtain for the innerproduct of τ ′(s)
and aν(u) the result:

0 = τ ′(s) · aν(u) =
d2uα

ds2
g
αν

(u) +
duα

ds

duβ

ds
Γ
σ

αβ
(u) g

σν
(u) .

Notice that we have two equations here, one for each value of ν. For ν = 1 we multiply this
expression with the matrix element g1µ of the inverse of the local metrical tensor, where µ can
be any of the two possibilities, and for ν = 2 we multiply the expression with g2µ. The sum of
the two results

0 =
d2uα

ds2
g
αν

(u) gνµ(u) +
duα

ds

duβ

ds
Γ
σ

αβ
(u) g

σν
(u)gνµ(u) ,

is called a contraction. When we moreover use formula (90), then we find

0 =
d2uµ

ds2
+

duα

ds

duβ

ds
Γ
µ

αβ
(u) , (194)

which relation is called the geodesic equation.
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Part IV

Examples of Riemann surfaces
In the following we study some properties of two-dimensional surfaces, embedded in three
dimensions, or Riemann surfaces. The book of Coxeter [4] has a lot more details and examples.
Here, we just restrict ourselves to the most obvious parametrizations for those surfaces, their
tangent spaces, the geodesic equations and, when easily possible, the geodesics.

28 The cylinder

As a first example, let us study the two-dimensional surface of a cylinder, embedded in an
Euclidean three-dimensional space. We let the axis of the cylinder coincide with the z-axis.
For its radius we take a and for its local coordinates we select the azimuthal angle ϕ and z.
The surface of the cylinder is then given by

x(ϕ, z) =













a cos(ϕ)

a sin(ϕ)

z













. (195)

Setting u1 = ϕ and u2 = z and using formula (141), we find for the local tangent vectors at
location P (ϕ, z)

a1(ϕ, z) =













−a sin(ϕ)

a cos(ϕ)

0













and a2(ϕ, z) =













0

0

1













. (196)

The local metrical tensor for the surface of the cylinder is then found by using the procedure
which is given in formula (142). Hence

g(ϕ, z) =





gϕϕ gϕz

gzϕ gzz



 =





a2 0

0 1



 . (197)

From expression (197) for the local metric it follows, by the use of relations (105) and (106),
that the local affine connection vanishes. Consequently, also using formulas (188) and (189), we
must conclude that the cylinder surface has no curvature. This may be a surprising conclusion,
but, after a little thinking it becomes evident that the result is correct: A flat piece of paper
has no curvature. When we roll up this sheet of paper to a cylinder, then that procedure does
not alter the intrinsic properties of the surface.

For the geodesic equations, using formula (194), we obtain accordingly

d2ϕ

ds2
=

d2z

ds2
= 0 . (198)

Hence, both ϕ(s) and z(s) are linear functions in s along a geodesic curve. Such solutions
are the circular helices, represented by the vector x(s) of formula (123). Slightly more general
solutions are given by
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x(s) =



















a cos
(

s√
a2 + b2

+ ϕ0

)

a sin
(

s√
a2 + b2

+ ϕ0

)

bs + c√
a2 + b2



















. (199)

where a represents the radius of the cylinder and where b, the speed of the circular helix, c and
ϕ0 are constant parameters. c allows for translations in the vertical (z) direction and ϕ0 for
rotations around the z-axis. In the limit b → ∞ one obtains

x(s) −→













a cos (ϕ0)

a sin (ϕ0)

s













,

which parametrizes straight vertical lines at the surface of the cylinder parallel to the z-axis.
It is illustrative to draw a skew straight line on a sheet of paper and roll up the sheet, to find

that indeed one obtains a circular helix. This shows then that a geodesic is indeed the closest
approximation to a straight line, or more precisely, the ”shortest” connection along the surface
between two points at the surface.
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29 The Ellipsoid

Let us consider the two-dimensional surface of an ellipsoid embedded in an Euclidean three-
dimensional space. The coordinates of three-space are the usual, given by x, y and z. An
ellipsoid, centered at the origin, is most conveniently parametrized by the spherical angles ϑ
and ϕ, according to

x = a sin(ϑ) cos(ϕ) , y = a sin(ϑ) sin(ϕ) and z = b cos(ϑ) . (200)

These relations represent a surface which is rotationally symmetric around the z-axis, whereas
its cross-section with the (x, z)-plane forms an ellips with principle axes of length 2a in the
x-direction and 2b in the z-direction. For this two-dimensional surface we select, naturally, the
following coordinates

u1 = ϑ and u2 = ϕ . (201)

Using formula (141), we find for the local tangential vectors at a certain point P (ϑ, ϕ), the
result

a1(u) =













a cos(ϑ) cos(ϕ)

a cos(ϑ) sin(ϕ)

−b sin(ϑ)













and a2(u) =













−a sin(ϑ) sin(ϕ)

a cos(ϑ) cos(ϕ)

0













. (202)

The metrical tensor for the surface of ellipsoid (200 is obtained by the procedure of formula
(142). One finds

g(u) =





g11 g12

g21 g22



 =





a2 cos2(ϑ) + b2 sin2(ϑ) 0

0 a2 sin2(ϑ)



 . (203)

The local afine connection follows from the relations (105) and (106). One finds from equation
(203) for the non-zero components

Γ
1

11
=

(b2 − a2) sin(ϑ) cos(ϑ)

a2 cos2(ϑ) + b2 sin2(ϑ)
,

Γ
1

22
=

−a2 sin(ϑ) cos(ϑ)

a2 cos2(ϑ) + b2 sin2(ϑ)
and

Γ
2

12
= Γ

2

12
=

cos(ϑ)

sin(ϑ)
. (204)

As we may observe from formula (203), the local basis vectors {a(u)} of the tangent plane are
orthogonal to each other. Hence, when we consider a geodesic curve x(s) at P (u), parametrized
by its proper length, s, then we can parametrize the corresponding tangent vector, τ (s), at
P (u) by the angle, α, it makes with a1, according to

τ (s) =
a1

|a1|
cos(α) +

a2

|a2|
sin(α) . (205)
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Consequently, following definition (161), we must conclude that along the geodesic curve one
has for the derivatives of the local coordinates, also using formula (202) the following

dϑ

ds
=

cos(α)

|a1|
=

cos(α)
√

a2 cos2(ϑ) + b2 sin2(ϑ)
and

dϕ

ds
=

sin(α)

|a2|
=

sin(α)

a sin(ϑ)
. (206)

Now, we also know that the geodesics follow the geodesic equation (194), which allows us
to find the second order derivatives of the local coordinates along the geodesic curve, from the
first order derivatives (206), also using equations (204) as follows

d2ϑ

ds2
= −Γ

1

11

(

dϑ

ds

)2

− Γ
1

22

(

dϕ

ds

)2

=
cotg(ϑ) sin2(α)

a2 cos2(ϑ) + b2 sin2(ϑ)
− (b2 − a2) sin(ϑ) cos(ϑ) cos2(α)

{

a2 cos2(ϑ) + b2 sin2(ϑ)
}2

and

d2ϕ

ds2
= −2Γ

2

12

dϑ

ds

dϕ

ds
=

−2 cos(ϑ) sin(α) cos(α)

a sin2(ϑ)
√

a2 cos2(ϑ) + b2 sin2(ϑ)
. (207)

The relation of τ (s) with the local basis vectors of the tangent plane is given by formulas
(205) and (206). Hence for the derivative of τ (s), we may write:

τ ′(s) =
d

ds

{

dϑ

ds
a1 +

dϕ

ds
a2

}

(208)

=
d2ϑ

ds2
a1 +

dϑ

ds

(

dϑ

ds
a1,1 +

dϕ

ds
a1,2

)

+
d2ϕ

ds2
a2 +

dϕ

ds

(

dϑ

ds
a2,1 +

dϕ

ds
a2,2

)

.

After some algebra, by substituting formulas (202), (206) and (207) into the above expression
(208), we find for the derivative of τ the following

τ ′(s) =
b

a

(a2 − b2) sin2(ϑ) sin2(α) − a2
{

a2 cos2(ϑ) + b2 sin2(ϑ)
}2













b sin(ϑ) cos(ϕ)

b sin(ϑ) sin(ϕ)

a cos(ϑ)













. (209)

The length of this vector is, according to formulas (126) to (129) of section (17), equal to
the inverse of the local radius of curvature in the direction of τ . Hence, we find

k (τ (s)) = τ ′(s) =

∣

∣

∣

∣

∣

∣

∣

b

a

(b2 − a2) sin2(ϑ) sin2(α) + a2
{

a2 cos2(ϑ) + b2 sin2(ϑ)
}3/2

∣

∣

∣

∣

∣

∣

∣

. (210)
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The extremum values of k (τ (s)) for different choices of the tangential direction parameter
α, are

k1 =
ab

{

a2 cos2(ϑ) + b2 sin2(ϑ)
}3/2

, (211)

for α = 0, which corresponds to the tangential direction δϕ = 0, and

k2 =
b/a

√

a2 cos2(ϑ) + b2 sin2(ϑ)
, (212)

for α = π, which corresponds to the tangential direction δϑ = 0.
The curvature parameter K(u) = K(ϑ, ϕ) of the local curvature of the surface at location

P (ϑ, ϕ) is defined in formula (175) by the product of k1 and k2. Consequently, applying the
results (211) and (212), one finds

K(u) = k1k2 =
b2

{

a2 cos2(ϑ) + b2 sin2(ϑ)
}2 . (213)

Notice that the curvature which follows from formula (213) for the case a = b, resulting in
K = 1/a2, corresponds to the näıve expectation for the curvature of a sphere.

The average local curvature parameter H(u) is defined in formula (176) by half the sum of
k1 and k2. Hence, from the results (211) and (212), one deduces

2H(u) = k1 + k2 =
b

a

(b2 − a2) sin2(ϑ) + 2a2
{

a2 cos2(ϑ) + b2 sin2(ϑ)
}3/2

. (214)

The local normal vector n(u) is defined in formula (143) by the outer product, normalized
to unity, of a1 and a2. So, from the results shown in formula (202), one obtains

n(u) =
1

√

a2 cos2(ϑ) + b2 sin2(ϑ)













b sin(ϑ) cos(ϕ)

b sin(ϑ) sin(ϕ)

a cos(ϑ)













. (215)

Notice, by comparing with expression (209), that τ ′(s) is indeed parallel to the normal of the
local tangent plane.

The local torsion tensor L(u) is defined in formula (153) by the innerproduct of aα, β(u)

and n(u). Consequently, exploiting the results shown in formulas (202) and (215), one gets

L(u) =





L11 L12

L21 L22



 =
−ab

√

a2 cos2(ϑ) + b2 sin2(ϑ)





1 0

0 1



 . (216)

Consequently, we can verify that the expressions (213) and (214) are in ageement with the
formulas (175) and (176). Using formulas (203) and (216), we find

K(u) =
L11L22

g11g22
= det

(

g−1L
)

and
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2H(u) = − L11

g11
− L22

g22
= − Tr

(

g−1L
)

.

Except for a minus sign in the latter result, we find perfect agreement. This sign difference
is caused by the angle ambiguity which we discussed in formula (167). By comparing formulas
(209) and (215), we observe that τ ′(s) and n(u) are antiparallel and hence the referred angle
is here π rather than 0, which causes a minus sign in formula (165) for the definition of the
curvature. We may also verify formula (193) for this particular surface. By the use of formulas
(188), (189), (203) and (204), we find for the curvature tensor

R
1212

(ϑ, ϕ) = g
11

{

Γ
1

21,2
− Γ

1

22,1
+ Γ

1

22
Γ

2

21
− Γ

1

11
Γ

1

22

}

=
−a2b2 sin2(ϑ)

a2 cos2(ϑ) + b2 sin2(ϑ)
(217)

When we substitute this expression in formula (193), then we find indeed

K(u) = −
R

1212
(ϑ, ϕ)

det(g)
.
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30 Geodesics on the sphere

Since a sphere with radius R centered at the origin can be considered as a special case of the
ellipsoid defined in formula (200), we may use all of the material developed in section (29), by
setting a = b = R.

The geodesic equations can be obtained from formula (194). Using also relations (204),
we find for the coordinates ϑ(s) and ϕ(s) of points at a geodesic on the sphere, which is
parametrized by its proper length s, the following differential equations:

d2ϑ

ds2
− sin(ϑ) cos(ϑ)

(

dϕ

ds

)2

= 0 and
d2ϕ

ds2
+ 2

cos(ϑ)

sin(ϑ)

dϑ

ds

dϕ

ds
= 0 . (218)

One possible strategy of solving the equations (218), is to express one of the coordinates as
a function of the other along the geodesic curve, for example let

ϕ(s) = ϕ(ϑ(s)) .

In order to simplify the formulas to come, we define

ϕ′ =
dϕ

dϑ
and ϕ′′ =

d2ϕ

dϑ2 ,

in which notation we obtain for the derivatives of ϕ with respect to the proper length parameter
s, the expressions:

dϕ

ds
=

dϑ

ds
ϕ′ and

d2ϕ

ds2
=

d2ϑ

ds2
ϕ′ +

(

dϑ

ds

)2

ϕ′′ ,

and hence for the equations (218)

d2ϑ

ds2
− sin(ϑ) cos(ϑ)

(

dϑ

ds
ϕ′

)2

= 0 and

d2ϑ

ds2
ϕ′ +

(

dϑ

ds

)2

ϕ′′ + 2
cos(ϑ)

sin(ϑ)

(

dϑ

ds

)2

ϕ′ = 0 . (219)

When we substitue moreover the first of the geodesic equations (219) into the second, then
we find the differential equation

(

dϑ

ds

)2 {

ϕ′′ + sin(ϑ) cos(ϑ) (ϕ′)
3
+ 2

cos(ϑ)

sin(ϑ)
ϕ′

}

= 0 . (220)

One type of solutions can readily be found. Namely those for which

dϑ

ds
= 0 i.e. ϑ(s) = ϑ constant ,

and for which, following the equations (218), one has moreover

sin(ϑ) cos(ϑ)

(

dϕ

ds

)2

= 0 and
d2ϕ

ds2
= 0 .
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The solutions of the latter equation can be classified by singular points on the sphere:

ϑ = 0 , π , i.e. North and South poles on the sphere;

ϑ and ϕ constant , i.e. singular points on the sphere; (221)

and by the Equator, corresponding to the circumference of the circle in the (x, y)-plane (see
also example 122), given by

ϑ =
π

2
and ϕ(s) =

s

R
. (222)

So, besides singular points, which obviously are solutions of the equations (218), we only
found one non-trivial geodesic curve, the Equator, actually the only solution of (218) for which
the coordinate ϑ is constant along the curve.

Other solutions of (220) are found from the second piece of this equation, i.e.

ϕ′′ + sin(ϑ) cos(ϑ) (ϕ′)
3
+ 2

cos(ϑ)

sin(ϑ)
ϕ′ = 0 . (223)

In order to solve this equation, we will study here an arbitrary intersection of the sphere
with a plane through the origin. Such intersections are called large circles. We will show then
that all large circles on the sphere are geodesic curves.

Any plane through the origin can be characterized by its orientation, for which one may
select its normal vector, say N = px̂ + qŷ + rẑ. The position vector xP = xx̂ + yŷ + zẑ
of a point P in the plane and the normal to the plane are perpendicular by definition. Hence,
one has

0 = xP · N = px + qy + rz . (224)

When P is moreover on the surface of the sphere, then we obtain, using relations (200) with
a = b = R, for equation (224) the form

p sin(ϑ) cos(ϕ) + q sin(ϑ) sin(ϕ) + r cos(ϑ) = 0 ,

or, since the cases sin(ϑ) = 0 and cos(ϑ) = 0 have been studied in formulas (221) and (222),
for sin(ϑ) 6= 0 the form

p cos(ϕ) + q sin(ϕ) = −r
cos(ϑ)

sin(ϑ)
. (225)

When we determine the first and second order derivatives of equation (225) with respect to ϑ,
then we find

ϕ′ {−p sin(ϕ) + q cos(ϕ)} =
r

sin2(ϑ)
(226)

and

ϕ′′ {−p sin(ϕ) + q cos(ϕ)} − (ϕ′)
2 {p cos(ϕ) + q sin(ϕ)} = −2r

cos(ϑ)

sin3(ϑ)
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By multiplying the second equation of formula (226) with ϕ′ and by substitution of relation
(225) and the first equation of formula (226) in the resulting expression, we obtain

ϕ′′
r

sin2(ϑ)
+ (ϕ′)

3
r
cos(ϑ)

sin(ϑ)
+ 2ϕ′ r

cos(ϑ)

sin3(ϑ)
= 0 , (227)

which is, for sin(ϑ) 6= 0 is completely equivalent to the geodesic equation (223). This proofs
that large circles are geodesic curves of the surface of the sphere.

59



31 The torus

Another such example, which is often referred to in the literature, is the torus, the two-
dimensional surface of a doughnut shaped object. Let us consider the surface of a wedding-ring
with a circular cross section of radius r. The radius of the ring, which is measured from the
center of the ring to the center of the circular cross section, will be denoted by R. From this
picture of a torus it might be clear that r is considered to be smaller than R. In order to define
coordinates on the surface of our torus, we let the center of the wedding-ring coincide with the
origin of the three-dimensional Euclidean embedding space. The centers of the circular cross
sections of the wedding-ring, which together form a circle of radius R, now centered at the ori-
gin, we suppose to all be in the (x, y)-plane. This way we obtain for a possible parametrization
of the surface of a torus the following expression:

x(α, β) =













R cos(β)

R sin(β)

0













+













r cos(α) cos(β)

r cos(α) sin(β)

r sin(α)













,

where r < R , α, β ∈ (0, 2π) . (228)

Apparantly, we have chosen α and β for the coordinates at the surface of the torus. Notice,
that the cross sections of this surface with planes which contain the z-axis, are circles centered
at a distance R from the origin. Such planes are characterized by β =constant and their cross
sections with the torus, which are called meridians, by the usual relations for circles, i.e.

(x cos(β) + y sin(β) − R)2 + z2 = r2 . (229)

For the local tangent plane, tangent to the surface at the point P (α, β), we find then, using
also formula (141), the basis vectors given by

α̂(α, β) =
∂x(α, β)

∂α
=













−r sin(α) cos(β)

−r sin(α) sin(β)

r cos(α)













and

β̂(α, β) =
∂x(α, β)

∂β
=
{

R

r
+ cos(α)

}













−r sin(β)

r cos(β)

0













. (230)

Inserting the result (230) into formula (142) yields for the local metric

g(α, β) =







g
αα

g
αβ

gβα gββ





 =





α̂ · α̂ α̂ · β̂

β̂ · α̂ β̂ · β̂



 =





r2 0

0 (R + r cos(α))2



 . (231)

The non-vanishing local affine connections are, by the use of formulas (151) and (152),
collected below
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Γ
β

αβ
= Γ

β

βα
= g

ββ
Γ
ββα

=
1

2
g
ββ

g
ββ, α

=
− sin(α)

R
r + cos(α)

(232)

and Γ
α

ββ
= g

αα
Γ
αββ

= −1

2
g
αα

g
ββ, α

= sin(α)
{

R

r
+ cos(α)

}

,

from which, using formula (194), follow the geodesic equations

d2α

ds2
= −

(

dβ

ds

)2

sin(α)
{

R

r
+ cos(α)

}

and
d2β

ds2
= 2

(

dα

ds

)(

dβ

ds

)

sin(α)
R
r + cos(α)

. (233)

Two types of solutions can be discovered without any difficulty. Those are solutions for
which

β = constant ⇒ dβ

ds
= 0 ⇒ d2α

ds2
= 0 ⇒ α =

s

r
,

or (234)

α = 0 or π ⇒ d2β

ds2
= 0 ⇒ β =

s

R + r
or

s

R− r
.

The first type of geodesics described by formula (234) are the meridian circles, represented by
formula (229). The second type are the equatorial circles in the (x, y)-plane and centered at
the z-axis with extremal radii, respectively maximum, R+ r, and minimum, R− r. When both
conditions dα/ds and dβ/ds vanish, one has isolated points at the surface of the torus.

In the following we assume that neither α, nor β, is constant. One may notice then that the
second of the geodesic equations (233) can also be written in the form

d

ds

[

{

R

r
+ cos(α)

}2
(

dβ

ds

)]

= 0 ,

which implies that the expression within the brackets is constant, say J , along a geodesic curve.
When this result is inserted in the first of the geodesic equations (233), one finds for α(s) the
equation

d2α

ds2
=

−J2 sin(α)
{

R
r + cos(α)

}3 .

We may simplify the first of equations (233), by considering α directly a function of β. In that
case one has

dα

ds
=

dβ

ds

dα

dβ
,

d2α

ds2
=

d2β

ds2
dα

dβ
+

(

dβ

ds

)2
d2α

dβ2

and
d2β

ds2
= 2

(

dα

dβ

)(

dβ

ds

)2
sin(α)

R
r + cos(α)

=
2J2 sin(α)

{

R
r + cos(α)

}5

(

dα

dβ

)

,
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which formulas can be put together, resulting in a second order differential equation for α as a
function of β

d2α

dβ2 +
2 sin(α)

R
r + cos(α)

(

dα

dβ

)2

+ sin(α)
{

R

r
+ cos(α)

}

= 0 . (235)

which remains to be solved.

The curvature tensor is defined in formulas (188) and (189). By the use of formula (232) we
find for the torus

Rβαβα = −r cos(α) {R + r cos(α)} ,

and, hence, for the curvature scalar, which is defined in formula (192) and in particular for a
two-dimensional surface in formula (193), one obtains

R(α, β) = − 2 cos(α)

r {R + r cos(α)} . (236)

Notice that at the equatorial circles one finds for the curvature scalar indeed, as expressed by
formulas (168), (175) and (193), −2 divided by the product of the radii of the equatorial circle
and the meridian circle. Notice moreover that at the outside (α = 0) the result is positive
(curved towards the origin), but at the inside (α = π) negative (curved away from the origin).
At the top (α = π/2) and at the bottom (α = 3π/2), where the curvature is vanishing, the
surface of the torus has locally the aspect of a cylinder.
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Part V

The description of gravitation by
curvature

32 Rectilinear motion

The rectilinear motion of a freely moving object in ordinary three dimensions can, at any instant
t, be parametrized by

x(t) = a t + b , (237)

where a and b depend on the initial conditions of the motion: The constant velocity of the
particle is represented by the vector a. Whereas the vector b represents the position of the
particle at instant t = 0.

The equations of motion for the particle’s movement can be characterized by the well-known
relation

d2 xi(t)

dt2
= 0 for i = 1, 2, 3 . (238)

Now, in the local coordinates of section (9), the equations of motion (238) take the form

0 =
d

dt





d xi

dt



 =
d

dt







x
i

, j
d x′j

dt







= x
i

, jk
d x′k

dt

d x′j

dt
+ x

i

, j
d2 x′j

dt2
,

or, equivalently

∂ x′ℓ

∂ xi
x
i

, jk
d x′k

dt

d x′j

dt
+

∂ x′ℓ

∂ xi
x
i

, j
d2 x′j

dt2
= 0 ,

which, by the use of the definition of the affine connection in formula (102), can be written as
follows:

Γ
ℓ

jk
d x′j

dt

d x′k

dt
+

d2 x′ℓ

dt2
= 0 . (239)
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The non-zero components of the affine connections for the 3D spherical coordinates are
given in formula (107). Substitution in the equations (239) gives

0 = r′′ + Γ
r

ϑϑ (ϑ′)
2
+ Γ

r

ϕϕ (ϕ′)
2
= r′′ − r (ϑ′)

2 − r sin2(ϑ) (ϕ′)
2

0 = ϑ′′ + 2Γ
ϑ

rϑ
r′ϑ′ + Γ

ϑ

ϕϕ
(ϕ′)

2
= ϑ′′ +

2

r
r′ϑ′ − sin(ϑ) cos(ϑ) (ϕ′)

2

0 = ϕ′′ + 2Γ
ϕ

rϕr
′ϕ′ + 2Γ

ϕ

ϑϕϑ
′ϕ′ = ϕ′′ +

2

r
r′ϕ′ + 2

cos(ϑ)

sin(ϑ)
ϑ′ϕ′ . (240)

In order to solve those equations for r = r(t), ϑ = ϑ(t) and ϕ = ϕ(t), we first observe
that the third equation can be written in the form

0 =
d

dt

(

r2 ϕ′ sin2(ϑ)
)

, (241)

which implies that r2ϕ′ sin2(ϑ) is a constant along the curve. Hence, without much loss
of generality we may select curves in the (x, y)-plane, for which ϑ = π/2. The equations
of motion reduce then to

0 = r′′ − r (ϕ′)
2

and 0 = ϕ′′ +
2

r
r′ ϕ′ . (242)

It it easy to verify that those equations are solved by

r(t) =
√

(at)2 + b2 and ϕ(t) = arctg

(

b

at

)

,

which, for two perpendicular vectors a and b, just represent the parametrization of a
straight line, as, indeed, parametrizing 3D space by spherical coordinates does not imply
any curvature.

On a curved surface we consider relation (239) as the definition of local rectilinear motion.
Instead of the time-parameter t, we use then the proper length parameter s, to obtain for
“rectilinear” motion at the curved surface (140) the equation of motion

Γ
µ

αβ(u)
d uα

ds

d uβ

ds
+

d2 uµ

ds2
= 0 . (243)

This is actually the same equation as the geodesic equation (194), as indeed geodesic curves
are the closest approximation to straight lines on a curved surface.

Locally, geodesics form exact straight lines with a full Euclidean geometry. At a global scale,
geodesics are of course not straight, however the most natural generalization of the “straight
line” concept to a curved surface. We may say that a “free” particle which is confined to move
at a curved surface, will follow a geodesic, with equation (243) being the equation to describe
its kinematics.

In the absence of curvature, we return to equation (238).

64



33 Parallel transport

In section (14) the derivatives of vector fields with respect to the local coordinates are studied.
Which is equivalent to the study of variations of a vector field for infinitesimal displacements
in space. It led us to the definition of the concept of the covariant derivative, formulated in
equations (112) and (113).

Now, suppose that a certain vector field v(x′) is constant. Then, in the N -dimensional
Euclidean space defined in section (9), one has, for the derivatives of that vector field with
respect to the local coordinates, the following

d v(x′)

dx′i
= 0 . (244)

A constant vector field in space means that at any point in space the vector v(x′) which
represents the field at the point P (x′), is parallel to the corresponding vector at any other point
in space. We could however, equally well consider the vector associated with the field at one
point in space, as the vector of the field from another point in space transported parellel to
itself. Hence, the vector field which is the result of transporting parallel to itself a given vector
at a given position to all other positions in space, is represented by equation (244). Moreover,
in view of equation (112), one has for the components of the vector field, when decomposed at
the local basis dictated by the local coordinates, the relation

v′
k
, i(x

′) = 0 . (245)

At a curved surface we might like to consider equation (245) as the definition of parallel
transport. Which means that we assume then that that equation is the closest analogue to the
global flat space definition.

Hence, we are then assuming that we are capable to define a constant vector field at the
surface (140) as the result of parallel transporting one given vector at the surface at a certain
point to all points at the surface. And, consequently, such vector field should satisfy

0 = v
µ
;α(u) = v

µ
, α(u) + Γ

µ

αβ(u) v
β(u) . (246)

For parallel transport along a curve, parametrized by its proper length s, we have moreover

d vµ(s)

ds
= v

µ
, α(u)

d uα(s)

ds
= −Γ

µ

αβ
(u) vβ(s)

d uα(s)

ds
. (247)

However, it can be shown that at a curved surface one cannot construct a vector field which
satisfies equation (246), since parallel transport depends at the curved surface on the path one
chooses (see examples in section 34).

Hence, we cannot extend the notion of a constant vector field to a curved surface, but only
the concept of parallel transport along a given path, as formulated in expression (247)

65



34 Parallel transport along curves at the sphere

The surface of a sphere with radius R and centered at the origin is parametrized by ϑ and ϕ,
as a special case of relations (200) for R = a = b. Let a curve at the surface of the sphere be
parametrized by its proper length parameter s, according to ϑ(s) and ϕ(s) and let us moreover
consider the vector field A(ϑ, ϕ) at the surface of the sphere. Restricted to the curve A turns
a function of s.

Now, let us assume that the vector field A(s) is the result of parallel transporting the vector
A(0), which is defined at the point of the curve parametrized by s = 0. Then, our vector field
satisfies relations (247), which, also using formula (204) for R = a = b =, in components reads

d

ds
A1(s) = sin(ϑ) cos(ϑ) ϕ′ A2(s) and (248)

d

ds
A2(s) = −cos(ϑ)

sin(ϑ)

{

ϕ′ A1(s) + ϑ′ A2(s)
}

,

where, as before, ϕ′ = dϕ/ds and ϑ′ = dϑ/ds.
Let us consider the special case of parallel transport along curves for which ϑ(s) = ϑ is

constant. In that case it is easy to relate ϕ and s. Using equations (118) and (203) for
R = a = b, we find

ds = R sin(ϑ) dϕ , (249)

which equation and the fact that dϑ/ds = 0, reduce the differential equations (248) to

d

dϕ
A1(ϕ) = sin(ϑ) cos(ϑ) A2(ϕ) and

d

dϕ
A2(ϕ) = −cos(ϑ)

sin(ϑ)
A1(ϕ) . (250)

Equations (250) have solutions of the form

A1(ϕ) = V sin [ϕ cos(ϑ)] + W cos [ϕ cos(ϑ)] and

A2(ϕ) =
1

sin(ϑ)
{V cos [ϕ cos(ϑ)] − W sin [ϕ cos(ϑ)]} ,

with V and W constants.

Let us study two typical cases:

1. The case ϑ = π/2

For parallel displacement along the Equator, which serves as an example for any geodesic
curve at the sphere, one finds for the vector field (251):

A(ϕ) =





A1(ϕ)

A2(ϕ)



 =





W

V



 ,

which is constant. We may thus conclude that for parallel displacement along the Equator
and, hence, along any geodesic curve, the displaced vector remains constant.
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2. The case ϑ = π/3

For displacement on the minor circle for ϑ = π/3, we find for the vector field (251) the
following

A(ϕ) =









V sin
(ϕ
2

)

+ W cos
(ϕ
2

)

2√
3

{

V cos
(ϕ
2

)

− W sin
(ϕ
2

)}









,

which is obviously not constant along the curve. Let A(0) be the original vector, which had to
be displaced parallel to itself. Below we write the original and the final vectors of the vector
field after a complete roundtrip, i.e. A(0) and A(2π). For the case W = 1 and V = 0 we find:

A(0) =





1

0



 and A(2π) =





−1

0



 .

We find that after a complete roundtrip the vector appears upside down at the initial location.

The general conclusion is that under parallel transport along non-geodesic curves a vector
field does not remain constant. And, consequently, that constant vector fields cannot be defined.

For completeness let us mention that for not too large roundtrips there is a relation between
the amount of variation of the parallel displaced vector, the enclosed area and the curvature.
Take for example the second case, where the vector changed over 180◦. The enclosed area by
the roundtrip is given by

area =
∫ π/3

0
dϑ

∫ 2π

0
dϕ R2 sin(ϑ) = πR2 .

When we devide this area by the amount of variation, = π, of the displaced vector, then we
find the square of the radius of curvature of the sphere.
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35 Local Euclidean geometry

When we make a map of a small village, then we will probably not notice that the Earth
surface is curved. The geometry, at the accuracy with which we can measure distances and
angles, looks perfectly Euclidean. But, what do we precisely mean by this last statement? A
possible answer to this question could for instance be that the sum of the angles of any triangle
within the small village equals perfectly 1800 at the accuracy of our measurements. This latter
statement was proven to be equivalent to Euclid’s fifth postulate, by Adrien Marie Legendre
(1752-1833).

However, if we go to a larger scale at the Earth’ surface, then we might encounter triangles
which give results, different from 1800, for the sums of their angles. As an example, let us
take the triangle which makes at the North Pole of the sphere a right angle and has two more
right angles at the Equator. This triangle encloses one octant of the Earth’ surface. Its angles
apparantly sum up to 2700, which implies that at this scale the geometry of the Earth is
noticably not Euclidean. At the much smaller scale of the little village it is also not Euclidean,
but within the accuracy of measurement we do not notice the resulting deviations.

In Descartes’ analytic geometry, Euclidean geometry is related to the definition of the dis-
tance between any two points, P and Q, in space, given by:

{

d
[

P
(

x1, x2
)

, Q
(

X1, X2
)]}2

=
(

X1 − x1
)2

+
(

X2 − x2
)2

, (251)

i.e. the distance follows the law of Pythagoras.
In the previous paragraphs we studied a two-dimensional surface endowed with coordinates

u and metrical tensor, g, such that infinitesimally a distance is given by formula (160). It
was Gauss who assumed that in a sufficiently small neighborhood around any point P on the
surface, we can define new coordinates {Σ(P )}, such that distances in this region of space are
given by:

ds2 = δab dΣ
a(P ) dΣb(P ) a, b = 1, 2 . (252)

Consequently, in the above defined region of space, given a certain accuracy of measurement
(or phrased more formal: to lowest order), distances obey Pythagoras’ law, which implies that
the geometry in that region is Euclidean.

A way to find these local Euclidean coordinates {Σ(P )} is to compare with each other
formulas (160) and (252), and, also using formula (89), to conclude that consequently we must
have:

g
ab
(P ) = δ

ab
∂Σa(P )

∂uα
∂Σb(P )

∂uβ
. (253)

So, we must find two such coordinates {Σ(P )} which satisfy (253) at the point P of space, in
order to be allowed to forget about curvature in a sufficiently small neighboring region of space
around P . It was Gauss who demonstrated that this procedure is always possible.

Notice at this point that the local Euclidean space has the geometry of the local tangent
space.
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For example, at the sphere with radius a (use formula (203) for a = b) the metrical
tensor is given by:

ds2 = a2 dϑ2 + a2 sin2(ϑ) dϕ2 . (254)

Now, at a certain point P (ϑ, ϕ) on the surface of the sphere, we define new coordinates
{Σ(P )}, according to:

Σ1(P ) = a {ϑ− ϑ(P )} and Σ2(P ) = a sin (ϑ(P )) {ϕ− ϕ(P )} . (255)

This choice of coordinates implies

dΣ1(P ) = a dϑ and dΣ2(P ) = a sin (ϑ(P )) dϕ . (256)

At the point P we find thus for an infinitesimal distance

ds2 =
{

Σ1(P )
}2

+
{

Σ2(P )
}2

.

And in small region around the point P , we find for an infinitesimal distance to lower
order to expression

ds2(ϑ, ϕ) = a2 dϑ2 + a2 sin2(ϑ) dϕ2

≈ a2 dϑ2 + a2 sin2 (ϑ(P )) dϕ2

≈
{

Σ1(P )
}2

+
{

Σ2(P )
}2

. (257)

The latter relation represents indeed Pythagoras’ law.

The choice of coordinates (256) can, in a more formal way, be written according to

Σa(P ) = V
a

α
(P )

{

uα − uα(P )
}

,

where the two objects {V (P )} are given by:

V 1
1 = a , V 1

2 = V 2
1 = 0 and V 2

2 = a sin (ϑ(P )) . (258)

The objects {V (P )} are called ”Zweibein” (in German ”Zwei” means two, and ”Bein” means
leg), and their generalization to four dimensions will show extremely useful for the handling of
particles with spin in curved space-time.

In terms of the Zweibein {V (P )}, relations (256) read in general

dΣa(P ) = V
a

α
(P ) duα . (259)

Under a general coordinate transformation, {u} → {u′}, we obtain for the above expression
the form

dΣa(P ) = V
a

α
(P )

∂uα

∂u′β
du′β , (260)

from which equation we might extract for the Zweibein the transformation rule
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V ′
a

β(P ) = V
a

α(P )
∂uα

∂u′β
. (261)

This, by the use of formulas (83) and (86), is subsequently found to be the transformation rule
for covariant components. So, we may interpret the Zweibein as the covariant components of a
set of two vectors.
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36 Tidal forces

In the following we will study our four dimensional space-time. We will discover that the effects
of a gravitational field can be described by assuming that the metric of space-time differs from
the usual Minkowskian metric. This implies that we assume that the effects of gravitation are
equivalent to space-time being curved. However, at this point we have to be very careful. We
only find an equivalence in the description. We do not assume that our space-time is embedded
in some higher dimensional space (neither exclude that this is possible). Because of this reason,
we will not refer to an embedding space. Which means that we only have at our disposal the
coordinates of space-time and the metric induced by gravitation, no tangent plane and neither
a normal to the tangent plane. However, the analogy with the local Euclidean space will still
be present in this case.

At Earth we observe the effects of gravitation from the fact that objects tend to fall towards
the center of the Earth, which is sometimes rather disturbing. At the surface of the Earth, the
effect of gravitation can be characterized by its constant of acceleration

g =
GM

R2 , (262)

where G, M and R represent respectively the Gravitational constant and the Earth’ mass and
radius.

Let x(t) be the position vector of a particle with mass m, which is freely falling near the
surface of the Earth, with respect to me being comfortably seated in my armchair at the surface
of the Earth. The equation of motion for the position vector in my coordinate system is in this
situation given by

m
d2x(t)

dt2
= mg . (263)

Another situation to study the motion of this freely falling particle, might to be put my armchair
in a equally freely falling elevator. Let us suppose that I am comfortably seated again, and
that the particle’s motion takes place inside the same elevator.

The new coordinates {x′} of the particle’s position vector with respect to me, are given by

x′(t) = x(t) − 1

2
gt2 and t′ = t . (264)

Consequently, I find, by substitution of the new coordinates (264) in formula (263), for the
equation of motion of the position vector of the particle

m
d2x′(t′)

dt′2
= 0 . (265)

The particle appears to be completely at rest with respect to me inside the freely falling
elevator. I might thus conclude, that no forces act on the particle. Apparantly, it seems
that the coordinate transformation (264) makes the effect of the gravitational field of the Earth
disappear.

For a system of two particles, A and B, with masses m(A) and m(B) and with mutual
interactions described by some force, F , which only depends on the relative positions of A and
B with respect to each other, one finds a similar result as we will see below.

In the coordinate system with respect to the surface of the Earth, I find the equations of
motions
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mA
d2xA(t)

dt2
= mAg + F (xA − xB) and

mB
d2xB(t)

dt2
= mBg + F (xB − xA) . (266)

Whereas, inside the freely falling elevator I obtain, using the transformations (264), for the
equations of motion

mA
d2x′

A(t
′)

dt′2
= F (x′

A − x′

B) and

mB
d2x′

B(t
′)

dt′2
= F (x′

B − x′

A) . (267)

As we may notice, in the latter equations the effects of gravitation have again completely
disappeared.

However, we should not conclude that the effects of gravitation are absent in the freely falling
elevator. At a larger scale, i.e. involving larger distances and longer periods of time, the effects
of gravitation can easily be observed inside the freely falling elevator, as we will explain below
for the case that the two particles do not mutually interact.

Suppose that initially the two particles have a certain distance with respect to each other.
Then,

1 when the two particles have the same distance with respect to the center of the Earth,
after a while we find that their relative distance has shrunk. The reason is of course, that both
particles are falling towards the center of the Earth along different radial directions, which
approach each other when their distance to the Earth becomes smaller.

2 when, also initially, the two particles have different distances with respect to the center of
the Earth, but move along the same radial direction, we find that after a while their relative
distance has grown. Here, the reason is that the particle which is closer to the center of
the Earth feels a slightly larger attraction all the time and thus is all the time slightly more
accelerated.

So, at a global scale we observe a horizontal attractive force which reduces the distances of
particles, and a vertical repulsive force which increases the distances of particles. These effects
are called the tidal forces, and no transformation can make them disappear.

The name tidal forces stems from the tidal motion of the oceans due to the presence of the
Moon. If we consider the Earth as a freely falling object in the Moon’s gravitational field, then
the oceanic waters feel repulsive forces with respect to the Earth surface at the sides towards
and opposite to the Moon (high-tide) and attractive forces in between (low tide). Due to the
Earth rotation these positions change in time, which causes the tidal motion of the sea waters.

In conclusion, we can say that locally (i.e. at small spatial distances and in short periods of
time) we can find a transformation which makes the effects of gravitation disappear for a given
accuracy of measurement. Globally, this is impossible.
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37 The principle of equivalence

The transformation (264) is based on the equivalence of inertial and gravitational mass. The
first person who reported the discovery that objects fall at a rate independent of their masses,
was of course Galileo Galilei (1564-1642). Since his initial measurements various experimental
improvements have been carried out to finally come to the same conclusion. The two most
famous results come from Roland von Eötvös and from R.H. Dicke. Von Eötvös concluded in
1889 that the inertial and gravitational masses for all materials are equal up to his experimental
precision of nine decimals. Dicke improved this precision in 1964 to eleven decimals.

The above experimental results, combined with the results of the section (36), lead to the
following generalization:

At every point in space-time in an arbitrary gravitational field, it is possible to select a
locally inertial coordinate system, such that locally the laws of nature take the same form as in
an inertial system in the absence of gravitation.

Notice the resemblance of the above statement with what is said in section (35) about the
local Euclidean coordinates at a curved two-dimensional space.

For further reading on this subject, I recommand the paragraphs 1.2, 1.3 and 3.1 of the book
of Steven Weinberg [5].
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38 Minkowskian space-time

From the previous paragraphs we might have understood, that instead of the somewhat boring
case of a two-dimensional arbitrarely curved surface embedded in three dimensions, we will
study in the following the more exciting case of a four dimensional curved surface without
referring to an embedding space.

We define a set of four coordinates {x} which characterize uniquely events, P (x), in this
space by its components

xµ , µ = 0, 1, 2, 3 .

Furthermore, we equip this space with a metric which represents the gravitational field and is
characterized by the metrical tensor

g
µν

, µ , ν = 0, 1, 2, 3 .

We associate the coordinates of this space with the space-time coordinates (in units where the
light velocity is taken unity, i.e. c = 1), of events, i.e.

x0 = t , x1 = x , x2 = y and x3 = z .

A specific example of such space is the Minkowskian space-time which represents space-time
in the absence of a gravitational field. Its metric tensor is given by

η =





















η00 η01 η02 η03

η10 η11 η12 η13

η20 η21 η22 η23

η30 η31 η32 η33





















=





















1 0 0 0

0 −1 0 0

0 0 −1 0

0 0 0 −1





















. (268)

The position vector of a certain particle moving with a constant velocity β in space, defines
a trajectory in the above space-time which in components is specified by

x0 = t and x(t) = βt . (269)

In the rest frame of the particle we might define coordinates {x′}, which according to the related
Lorentz transformations are associated with the {x} coordinates, by the usual expressions

t′ = γ {t− β · x}

and x′ = x + γ

{

γ

1 + γ
β(β · x) − βt

}

, (270)

where γ2 = 1/ (1− β2).
The spatial position of the particle itself is, in its own restframe, evidently given by

x′(t′) = 0 .

which result in agreement with (269).
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For its proper time we find consequently, using formula(270), the following

t′
2
= γ2

{

t2 − 2(β · x)t+ (β · x)2
}

= t2 − x2 = ηµν xµxν .

So, instead of using the time parameter, t, for the characterization of the trajectory, we could
equally well select the proper time parameter, s, which we define by

ds2 = η
µν

dxµ dxν . (271)

The above expression reminds us of a similar definition given in formula (118) for the proper
lenght in ordinary space. In Minkowski space the related quantity is called the proper time.
However, we must be a bit careful in using this parameter, because of the peculiar form of
the metric (268). For particles which move with the velocity of light the proper time vanishes.
So, for such particles we are forced to use a different parameter for the characterization of its
trajectory.

At this point it might be useful to read the chapter on ”Special Relativity” (chapter 2)
of Steven Weinberg’s book [5], which deals with Lorentz transformations, particle dynamics,
electromagnetism and the Energy-Momentum tensor. But, be careful enough to notice that
Weinberg’s definition (2.1.3) of the metric in Minkowskian space-time differs a minus sign from
the definition (268) in these notes.
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39 Gravitational forces

According to the Principle of Equivalence (see section 37), there exists a local freely falling
coordinate system, {Σ} (compare section 35), in which the equation of motion of a particle
which moves freely under the influence of purely gravitational forces, is given by (compare
formula 265)

d2Σµ(s)

ds2
= 0 . (272)

and where the proper time, s, can be defined in the same way as the proper time of Minkowskian
space-time (i.e. in the absence of gravitational forces, see formula 271).

In a different coordinate system {u}, we define the metric in analogy with formula (253), by

g
µν

(u) = η
αβ

∂Σα(u)

∂uµ
∂Σβ(u)

∂uν
. (273)

In terms of this metric, the proper time is given by

ds2 = g
µν

duµ duν . (274)

The equation of motion (272) in terms of the coordinates {u}, through the definition of the
afine connection (formulas (105) and (106)), obtains the form

0 =
d2uµ

ds2
+ Γ

µ

αβ
(u)

duα

ds

duβ

ds
, (275)

for which we recognize the geodesic equation (see formula 194).
For massless particles, which move at the speed of light, we have

ds2 = 0 . (276)

So, for massless particles we are forced to use a different parametrization, say σ, for the
geodesics. In general, in terms of a different parameter, σ, we find for the equation of mo-
tion (275), the expression

0 =
d2uµ

dσ2 + Γ
µ

αβ(u)
duα

dσ

duβ

dσ
, (277)

and for the proper time (274), the expression:

ds2 = g
αβ

(u)
duα(σ)

dσ

duβ(σ)

dσ
. (278)
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40 The Schwarzschild metric

As an example of how the effect of a gravitational field can be represented by curvature, we
study the Schwarzschild metric. Consider a three-dimensional space with spherical coordinates
{u} = {r, θ, ϕ} which are related to the usual coordinates {x, y, z}, by

x = x(r, ϑ, ϕ) = r sin(ϑ) cos(ϕ) ,

y = y(r, ϑ, ϕ) = r sin(ϑ) sin(ϕ) ,

and z = z(r, ϑ, ϕ) = r cos(ϑ) (279)

Concentrated in the center of this space we assume a source of gravitational field (e.g. the
Sun) of mass M . Space-time is in this case characterized by the coordinates

u0 = t , u1 = r , u2 = ϑ , u3 = ϕ . (280)

Shortly after Albert Einstein formulated his general theory of relativity, in 1916, Karl
Schwarzschild found a solution to Einstein’s equations which describes precisely the above
sketched situation. The Schwarzschild metric is given by

ds2 = A(r) dt2 − dr2

A(r)
− r2

{

dϑ2 + sin2(ϑ) dϕ2
}

, (281)

where A(r) = 1− 2MG
r .

A first inspection of the above formula for the proper time indicates us that at large spatial
distances the expression tends towards the Minkowskian proper time relation (271) for spherical
coordinates. So, at large spatial distances we expect locally results similar to motion in the
absence of a gravitational field.

Let us study here the geodesics of the space-time characterized by the coordinates (280)
and the metric (281). For this purpose we first determine the non-zero elements of the afine
connection (see formulas (105) and (106)), to find

Γ
t

tr
= Γ

t

rt
= −Γr

rr
=

A′(r)

2A(r)
, Γ

r

tt
=

1

2
A(r)A′(r) , Γ

r

ϑϑ
= −rA(r) ,

Γ
r

ϕϕ
= −r sin2(ϑ)A(r) , Γ

ϑ

rϑ
= Γ

ϑ

ϑr
= Γ

ϕ

rϕ
= Γ

ϕ

ϕr
=

1

r
,

Γ
ϑ

ϕϕ
= − sin(ϑ) cos(ϑ) and Γ

ϕ

ϑϕ
= Γ

ϕ

ϕϑ
= cotg(ϑ) , (282)

where A′(r) =
dA(r)
dr

.

According to formula (277) the geodesic equations give here a set of four coupled differential
equations, for µ =0, 1, 2 and 3. However, without much loss of generality we may, because of
the spherical symmetry of (281), reduce this to a set of three coupled differential equations by
selecting θ = π/2, which implies dθ/dσ = 0. It might however be instructive, to consider first
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the general case and then, after being convinced that no additional solutions are surpressed,
reduce the set of geodesic equations by a specific choice for ϑ. This is left as an exercise for the
reader.

For µ = 0, we find, using formulas (277) and (282), the equation

d2t

dσ2 +
A′(r)

A(r)

dt

dσ

dr

dσ
= 0 , (283)

which equation for A(r) 6= 0 can be rewritten in the form

d

dσ

{

A(r)
dt

dσ

}

= 0 . (284)

Consequently, we discovered a constant of motion, for which, again without much loss of gen-
erality, we may choose unity, i.e.

dt

dσ
=

1

A(r)
. (285)

For µ = 3 the geodesic equation (277), using once more formula (282), yields

d2ϕ

dσ2 +
2

r

dr

dσ

dϕ

dσ
= 0 , (286)

which equation for r 6= 0 can be rewritten in the form

d

dσ

{

r2
dϕ

dσ

}

= 0 . (287)

We find a second constant of motion to which we will give the name angular momentum per
unit mass, and for which we will introduce the symbol, j, i.e.

dϕ

dσ
=

j

r2
. (288)

Finally, for µ = 1, also using formulas (285) and (288), we reach at the geodesic equation
for the radial distance r as a function of σ:

0 =
d2r

dσ2 +
1

2
A(r)A′(r)

(

dt

dσ

)2

− A′(r)

2A(r)

(

dr

dσ

)2

− rA(r)

(

dϕ

dσ

)2

=
d2r

dσ2 +
A′(r)

2A(r)







1−
(

dr

dσ

)2






− rA(r)
(

j

r2

)2

, (289)

which expression, for A(r) 6= 0, can be rewritten in the form

d

dσ







1

A(r)





(

dr

dσ

)2

− 1



 +
j2

r2







= 0 . (290)

A third constant of motion, for which we will use the symbol ǫ, given by:
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ǫ =
1

A(r)



1 −
(

dr

dσ

)2


 − j2

r2
. (291)

Instead of the geodesic parameter σ we could have used the ordinary time parameter t to
parametrize the orbit of a geodesic. This leads for equation (290), using formula (285), to the
following expression

d

dt







1

A3(r)

(

dr

dt

)2

− 1

A(r)
+

j2

r2







= 0 . (292)

Also, we could have used the azimuthal angle, ϕ, to parametrize the geodesic. A similar
procedure has been studied in section (30). With this choice of parameter we find for equation
(290), using the result (288), the relation

d

dϕ







1

A(r)

(

j

r2

)2
(

dr

dϕ

)2

− 1

A(r)
+

j2

r2







= 0 ,

which also can be written in the form

2
j2

r3
1

A(r)

(

dr

dϕ

)







1

r

d2r

dϕ2 − 2

r2

(

dr

dϕ

)2 [

1 +
1

4
r
A′(r)

A(r)

]

+
1

2

r3

j2
A′(r)

A(r)
− A(r)







= 0 ,

Hence, for A(r) 6= 0, dr/dϕ 6= 0 and r 6= 0, moreover introducing the notation r′ and r′′ for
respectively dr/dϕ and d2r/dϕ2, and substituting the expression of formula (281) for A(r), we
obtain

r′′

r
− 2

(

r′

r

)2 [

1 +
MG

2r

]

+
MGr

j2
− 1 +

2MG

r
= 0 . (293)

41 Planetary orbits

In the following we will make some very mild approximations (only affecting the solutions to
less than one part out of a million), in order to be capable to study without much effort and in
more detail the results of the previous section.

At planetary distances from the Sun we have r ≪ 2MG. For example, for the mass M of the
Sun 2MG ≈ 3×103 m, whereas for the distance of the Sun to the Earth one has r ≈ 1, 5×1011

m, which is a difference of eight orders of magnitude. Consequently, we may expand A(r)
in MG/r for planetary distances, keep only the lowest order terms and yet still obtain very
accurate solutions for planetary motion.

In this approximation we observe from (285) that the time parameter, t, and the geodesic
parameter, σ, coincide, since A(r) ≈ 1, which leads for (288) to the relation

r2
dϕ

dt
= j , (294)

which is the well-known second law of Johannes Keppler about sweeping equal areas in equal
time-intervals.
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For the geodesic equation (293) the above approximation has the consequence that terms
MG/r, can be neglected with respect to unity. We obtain then to an accuracy of eight decimals
the following “geodesic” equation for r:

r′′

r
− 2

(

r′

r

)2

+
MGr

j2
− 1 = 0 , (295)

which has the well-known solutions

r(ϕ) =
j2/MG

1− e cos(ϕ)
, e ≥ 0 . (296)

The various orbits which are represented by formula (296) can be classified by the excentricity
parameter, e, according to:

1. e = 0 circles

2. 0 < e < 1 ellipses

3. e = 1 parabolas

and 4. e > 1 hyperbolas

In order to compare easily relation (296) with geometric figures, one may define R = j2/MG,
x = r cos(ϕ) and y = r sin(ϕ). Relation (296) turns then into

√

x2 + y2 − ex = r − er cos(ϕ) = R ,

which leads to the following relation for x and y







x− eR
1− e2

R
1− e2







2

+
(

1− e2
)

(

y

R

)2

= 1 .

We find at planetary distances, where A(r) ≈ 1, that the geodesics of Schwarzschild’s metric
(281) represent the orbits of the planets as observed by Keppler. Newton’s equations of motion
are here represented by the geodesic equations (283), (286) and (289) for the ”straight” lines
at the curved surface, which are the shortest connections between points in curved
space-time.

The conserved quantity ǫ, which has been defined in formula (291), is, in the approximation
(295), related to the local energy, E/m, of the system per unit mass of the planet. From the
Newtonian gravitation formula we find for the total energy per unit mass

E

m
=

1

m
{E(kinetic) + E(gravitational field)} =

1

2
v2 − MG

r
,

which, by the relation (294), takes the form
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E

m
=

(

j

r2

)2
{

r′
2
+ r2

}

− 2MG

r
. (297)

Let us compare this expression with the approximation (295). The latter could have been
formulated as follows

d

dϕ







(

j

r2

)2
(

dr

dϕ

)2

− 1 − 2MG

r
+

j2

r2







= 0 , (298)

which is the approximation at large distances of the differential equation (290) for the conserved
quantity (291). We find then the relation

ǫ = 1 − 2E

m
. (299)

For the specific form of the solutions (296) we may determine a relation with the excentricity
parameter, e, and the above quantities. Also using (298) and (297), we find

2E

m
=
(

j

r2

)2
(

e2 − 1
)

. (300)

We learn then that for free particles, i.e. E > 0, we need e2 > 1, which gives the hyperbolic
solutions of (296). For bound planets, i.e. E < 0 we obtain from (300) that e2 < 1, which
gives the circles and ellipses. In the latter case also ǫ is positive, but this is generally true for
material particles in the Schwarzschild metric, as we will show below.

Relation (291) can be rewritten. Using formulas (285) and (288), we obtain the following
form for this constant of motion

ǫ = A(r)

(

dt

dσ

)2

− 1

A(r)

(

dr

dσ

)2

− r2
(

dϕ

dσ

)2

,

which expression, using the definition (281) of the proper time, takes, for the case θ = π/2, the
form

ǫ =
ds2

dσ2 ≥ 0 . (301)

Hence, we come in general to the conclusion that ǫ = 0, for massless particles, and ǫ > 0,
for massive particles.

The Schwarzschild metric (281) not only reproduces the orbits of planets around the Sun,
but also the deflection of light by the Sun as observed during Sun eclipses for stars behind the
Sun, the perihelion precession of the planet Mercury and more (see for example Weinberg’s
book [5], chapter 8, Classic tests of Einstein’s Theory). Moreover, gravitational collapse and
black holes can be studied using the Schwarzschild metric. This is well described in chapter 11
of Weinberg’s book.
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Part VI

The Einstein equations

42 Preliminaries

The field equations for gravity must be more complex than the similar equations for electro-
magnetism, for a very simple reason. Namely, the electromagnetic field interacts with electric
charge, but does not carry charge itself, whereas the gravitational field interacts with energy
and momentum, but also carries energy and momentum itself. Therefor, the Maxwell equations
are just linear differential equations. However, for the gravitational field we must expect more
complicated and non-linear expressions.

The principle of equivalence states that inertial mass and gravitational mass are equal. In
Newtonian gravity that has as a consequence that the mass m of a test particle, with

m = minertial = mgravitational , (302)

does not come in the equations of motion when it moves (with low velocity) in the gravitational
field of a distant massive source of gravity with mass M , namely

minertial
d2~x

dt2
= G

mgravitationalM

d2
⇐⇒ d2~x

dt2
=

GM

d2
. (303)

Here d represents the distance of the test particle from the source, whereas ~x are its local
coordinates.

In terms of the metrical tensor, the principle of equivalence is expressed by the fact that, at
any point X in an arbitrary strong gravitational field, one can define locally inertial coordinates
x, such that

gµν(x = X) = ηµν and

(

∂gµν(x)

∂xσ

)

x = X
= 0 , (304)

where ηµν represents the in-the-absence-of-any-gravitational-field Minkowskian metric. Hence,
in the locally inertial coordinates x, all derivatives of gµν(x) vanish at the point x = X .
Consequently, on expanding the metric around the point X , one has

gµν(x) =

= gµν(X) + (x−X)σ
(

∂gµν(x)

∂xσ

)

x = X
+

1

2
(x−X)σ(x−X)ρ

(

∂2gµν(x)

∂xσ∂xρ

)

x = X
+ . . .

= ηµν +O
(

(x−X)2
)

. (305)

In the weak gravitational field approximation, we have Newton’s theory to guide us. We
assume that the gravitational field is somehow described by the metrical field gµν(x). Hence, for
a slowly moving test particle, near x = X , in a weak stationary gravitational field, we assume
that its motion is described by the geodesic equation (194), given by

d2xµ

dτ 2
+ Γ

µ

αβ(x)
dxα

dτ

dxβ

dτ
= 0 , (306)
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where τ represents the proper time of the test particle along its geodesic.
Since, furthermore, the test particle is sufficiently slow (i.e. for its velocity ~v one has v ≪ 1),

we find
∣

∣

∣

∣

∣

d~x

dτ

∣

∣

∣

∣

∣

≪
∣

∣

∣

∣

∣

dt

dτ

∣

∣

∣

∣

∣

. (307)

As a consequence, one obtains for the equation of motion (306) of the test particle, the expres-
sion

d2xµ

dτ 2
+ Γ

µ

00(x)

(

dt

dτ

)2

≈ 0 . (308)

Moreover, since the gravitational field is stationary, all time derivatives of gµν(x) vanish, which
results for the affine connections in

Γ
µ

00
(x) ≈ −1

2
gµi(x)g00,i(x) (i = 1, 2, 3) . (309)

Furthermore, since the gravitational field is weak, one may write

gµν(x) = ηµν + hµν(x) |hµν(x)| ≪ 1 . (310)

We obtain for (309) the expression

Γ
µ

00(x) ≈ −1

2
ηµi(x)

∂h00(x)

∂xi (i = 1, 2, 3) ,

or

Γ
j

00
(x) ≈ −1

2
ηji(x)

∂h00(x)

∂xi (i, j = 1, 2, 3) and Γ
0

00
(x) ≈ 0 . (311)

Substitution of the result (311) in equation (308), gives

d2~x

dτ 2
≈ 1

2

(

dt

dτ

)2

∇h00(x) and
d2t

dτ 2
≈ 0 . (312)

The second equation implies dt/dτ is constant. We may divide out that constant in the first
equation of (312), to obtain

d2~x

dt2
≈ 1

2
∇h00(x) . (313)

The corresponding Newtonian equation for a slowly moving particle in a stationary gravitational
field, is given by

d2~x

dt2
= −∇GM

r
, (314)

thereby assuming that the locally inertial coordinates are chosen such that the source of the
gravitational field is situated in the origin of the coordinate system, and r = |~x |. Hence, we
could adopt the following identification

h00(x) = −2
GM

r
⇐⇒ g00(x) = 1− 2

GM

r
. (315)

You may compare the above expression to the g00 element of the Schwarzschild solution (281).
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43 The energy-momentum density tensor

In section 42, we have assumed that the source of gravity is a pointlike massive object, with
mass M , situated in the origin of the locally inertial coordinate system. Here, we will consider
more general mass distributions.

For a point particle, with mass M and situated in the origin of the locally inertial coordinate
system, it makes sense to define its energy-momentum density tensor by

T 00(x) = Mδ(3)(~x ) and T µν(x) = 0 for µ 6= 0 or ν 6= 0 , (316)

since, in that case, one obtains for the total energy

E =
∫

d3x T 00(x) = M . (317)

For a moving point particle along a path given by xµ(t), with velocity ~v = d~x/dt, one could
define the following energy-momentum tensor

T µν(x) = M
dxµ(t)

dt

dxν(t)

dt
δ(3) (x− x(t)) . (318)

That gives for the total energy of the point particle

E =
∫

d3x√
1− ~v 2

T 00(x) =
M√
1− ~v 2

, (319)

and for the i-th component of its momentum

pi =
∫

d3x√
1− ~v 2

T 0i(x) =
M√
1− ~v 2

dxi(t)

dt
=

Mvi√
1− ~v 2

. (320)
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