RG folklore

rlnvariance with respect to change of the reference scale p

dF

— =0.
dps

can be detailed as a linear partial DE

o o
[w%—ﬁ(g)a—g] F(z,g)=0; z=q¢/u’, g=g,..
o7
Bgu) = = ga(j) at z=p°.

Running coupling g is a function of 2 arguments : ¢*/u? =

and g, with property g(1,g) = g. The g satisfies egs. (1),(2).

Due to this it is invariant coupling function.
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RG folklore; cont.

-

Besides,
dg(z, g)
T = plglx, . 4
5 = Pg(z,9)) (4)
Also of interest are covariant objects s(x, g) with
-5 p i

T B(g) 90 -5(g)| s(xz,g) =0, (5)

vs(g) being anomalous dimension of s .
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Mathematical Grounds

fFunctionaI and Diff. Equations
The central is Funct. Eq (FE) for invariant coupling

X

9.9 =g(7.9tg) . ®

Non-linear DEq (4) is obtained from it by differentiating over «
with t = x. In parallel, by diff-ing over ¢t at t = 1 one gets

(partial) PDE(q (2) with the Lie operator L(x, g)

L(z,9)3(x,g) = 0; L{z,g) = {xi _ ﬁ(g)a%} o

0x
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Functional Group Egs

- Due to this, Funct. egs (6) and

s(x,g) =5(t,9)3 ( % ,§(t,g)) (8)

presents most general form of RG symmetry in QFT.
From (6), (8) stem (4) and

D g @) @

Meanwhile, these Funct. Eqgs.(8) and (6)

§(z.9) =3 (.9(t.9)) - (6)

t

just contain the group composition law and
o have no physical contents !!
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RG transformation

~ Consider change [11; — 11, i — gi] , @S operaton
with continuous positive parameter ¢, acting on

group element G;(u;, g;) , specified by 2 coordinates.
Operation R;
Ri-Gi =Gy ~ Ry {pii — pi =t gi — g1 = G(t, 9i) §

contains dilatation of 1, and funct’l transf-n of g,fl.o)

The R; group structure is provided just by eq.(6).

Indeed, if we put = = 7¢, then its |.h.s. describes

the R,; actingon g, whilerh.sone— R, ® R; g
LRTtg =g(7t,9); RQRig=R;g(t,9) =7 (Taﬁ(tagn

Coimbra, 15 May 08 e




Lie Group of Transformations

~ Combination of o
Ri-Gi=Gr~ R {p; = pj=tu;, g — g = 3g(t,g:)} (10)
and

RTtg — §(7t79)3 RT®R7§9 — RTg(tag) — g(Tvg(t7g))

results In g(x,9) =g (%7g(t7g)) . (6,

Hence, the eq.(6) provides the group composition

law R.; = R ® R;,thatis operations R; (10)) form
continuous Sophus Lie(1880) group of transformations

_ -




Abstract formulation of composition law

. Let T'(l) be a transf-tion of an abstract set M of -
elements M, to itself, depending on continuous
real parameter [, varying in (—oo < [ < c0), That
IS, for each M one can write

TYM =M (M,M' C M) .

Assume, set M can be projected on numerical
axis, I.e., to each M; there correspond a number g; .

Then T(g=4g =G(l.g) .
with G — continuous function of 2 arguments.

_ .



Abstract form-n of composition law, cont’d

|7 T(l)g — g/ — G(lvg) ) T

with G — continuous function with property

G(0,9) =g, thatrelatestounitytrans-n T'(0) = E.

Trans-s T'(1) form a group provided the composition

law T'(\) @ T'(l) = T'(A + 1), and funct’l eq for G
G{N G(l,g)} =GA+1,g) (11)
holds.

_ .



Diff. Group Equations

fAccording to Lie group theory, it's sufficient to T
consider infinitesimal (at A < 1) version of (11) —
the Diff. eq.

0G(l, g)
Ol

with generator defined via derivative
_ 0G(€,9)
5(9) T ae ?
After logarithmic change of variables
l=Inz, A=Int, G(,9)=g(z,g9), T(nt)=R;, (13)

=BG g); - (12)

at ¢ = 0.

we get multiplicative (6), (4) instead of additive (11), (12).

_
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Transformation of reparameterisation

A particular solution f(z) of some boundary -
problem iIs specified by boundary condition
f(x9) = fo. It can be given as F(x/xy, fy) with
property F(1,v) =~. Now equation
F(x/xo, fo) = F (x/11, f1)
expresses the reparameterization invariance as in the
explicit case F'(x,v) = ®(Inz + ~)). Using relations

fi=F(xi/x0, fo); §=x/x0, t=21/20,

we come to the funct'l eq.

F = F F 6— b
ELFwR)  G-bis)



Transf-n of reparameterisation; contd

f F(gaf()) — F(f/tvF(t7f0)) (6_b7;8)7

IS equivalent to
presented as

6

. The involved operation can

Gt : {fﬁf/tafoﬁfle(tva)}

The additive version of these eqgs is
R(l) : {¢—d=q-1, g—4g=0G(,9)}, (15

and (11).
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The additive version

fR(l) - H{a—d=q-1, g—9g=G(g)}, a6
By change of variables g — =z =¢?, | —t=¢' and
of function (13) one gets (4), (6) and transf-n

Ry « {2'=ua/t, ¢d=g(t9g)} (17)
iInstead of eqs.(11), (12),(16).
One can treat egs.(4),(6), (17) as multiplicative version of RG
eqs. for effective coupling in massless QFT with 1 coupling ¢.

Here, + = Q?/u* . For propagator amplitude one has
o(q,9) — R()o==z(l,9)0(d,9), (18)

that corresponds to (8).

_ .



Simple Generalizations

~ "Massive” Case. For example in QFT, if we donot
neglect the particle mass m, we should insert one
more argument into the effective coupling g which
now has to be considered as a function of 3
variables z = Q*/u*, y = m*/u*, g. The presence
of a "mass" argument y modifies group transf-n

R : {a'=zx/t, v=y/t, ¢=7tvy;9)} (19

and the functional equation
_ (T Y
g(ﬂs,y;g)zg(;, nE g(t,y;g)) - (20)
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Simple Generalization, 1

X Yy B

- v
t ot

New parameter y enters also into the
transformation law of ¢ .

9@, y:9) =3 (

Let QFT model has several masses (like, QCD).
Then there will be several mass arguments

y—{y} =v1,Y2, ... Yn .
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Multi-coupling case

fAnother generalization relates to several coupling T
constants case: g — {g} = g1,... g, . Here arises
"family" of effective couplings

g—19r, 9i=gxy19}), 1=12,...k, (21)
satisfying the system of coupled funct’l egs

N gi(ajay; {g}) —
Ji (;, %; . gi(t,y;49}) ) (22)

_ .



Multi-coupling case; cont'd

f“his system is a generalization of (5) and (20) to T
the case when every element M; of M can be
described by k parameters, i.e., by the point {g} in

a k-dimensional real parameter space.

The RG transformation looks like

Re:{or— 2 y— 7 {g} = (g0}

gi(t) = gi(t,y;19})- (23)

_ .



1st lllustration: Elastic Rod

- The symmetry of the FSS group transf'ns can be 'discovered’
In many problems taken from diverse fields of physics.

- w
homogeneous ™~
external —

forces
N

fixation

point \

VA A4 s 7S S S S S S S S S S S S
/nOn

Figure 1: “Elastic rod" model
Imagine an elastic rod with a fixed point (point "0" in Fig.

bent by some external force, e.g., gravity or pressure of a

Lmoving gas or liquid. J
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Elastic Rod, 2

rThe form of rod can be described by angle ¢ T
between tangent to the rod and vertical direction
considered as function of distance [ along rod from
the fixation point, that is by function g(/). If the
properties of the rod material and of external forces
are homogeneous along its length (i.e.independent
of 1), then ¢(/) can be expressed as function
G(l, go) depending also on gy, deviation angle at
fixation point from which distance [ iIs measured.
Naturally, G should depend on other arguments, like extra forces and rod material

parameters, as well but in this context they are irrelevant.
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Elastic Rod, 3

- Take two arbitrary points on the rod, "1" and "2" (see Fig.1
with [y = ambda and [, = X\ + (. The angles g; at points "0",
"1" and "2" are related via G function :
g =GN go), g2=GA+1,90) =G(l, g1). (24)

To get the very r.h.s. of 2nd eq., one has to imagine that

fixation point now is "1" as in Fia. 2.
' gz

group
operation

. ”O”
\_ Flgure 2: Group operation for the "Rod". J
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Elastic Rod, 4

|gz

y, 1
77T groun
A A operation
Figure 2. Group operation for the "Rod".

Combining all Egs.
g1=GA\ ), 2=GA+1,9) =G, g1),  (23)

LWe get group composition law ( 7) for the function G(, g).
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Elastic Rod, 5

~ In course of deriving the 2nd of Egs. (24) we have tacitly
assumed that rod is of infinite length. If we introduce a finite

length L - Fig. 3, / V/
/N

[/ 777777777 (177777777 77777777

Figure 3: Rod with discrete inhomogeneity.

then (1, g) must be replaced by function G(I, L, g) of 3
essential arguments, where the 2nd one is distance between
Lthe fixation point and the free end.
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Elastic Rod, 6

// /”/

TTTTTTTTTT777 77777777 TTTTTTITT7
Figure 3: Rod with discrete inhomogeneity.

g1 :G()\7L790)7 g2 :G()\—I_laLagO) :G(laL_)\agl) (25)

fCombining now

we come to the functional equation
G+ XML,g) =G, L—\G\L,g)), (26)

which is just an "additive" version of the massive QFT one
_ _ (T Y _
and can be transformed to it by log change of variables used to get (7) from (5).
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Breaking of Homogeneity

In (25) and (26) the 2nd argument L is not necessarily the rod length. It can be
treated as a distance from the fixation point to a place where the rod properties

undergo a discrete change (say, in thickness or in material).

Generally, the additional argument L describes the
discrete breaking of homogeneity property of the system.
It can take place at several points. Their
coordinates must be introduced as G additional
arguments: L — {L}. In the QFT case this
corresponds to the introduction of particle masses.

_ .



RG symmetry as Functional Self-Similarity

o .

RG symmetry and RG transf-n are close to the
notion of Self-Similarity well known in math. physics
since the end of XIX. The Self-Similarity transf-n is
a simultaneous power scaling of arguments

z ={x,t,...} and functions V;(x,t,...)

Sy: | r—axA, t—t\ } |
Vi) = V;(2)) = XVi(2) }
We call it Power Self-Similarity=PSS transformation.

_ .



RG vs Power Self-Simil 2

fAccording to Zeldovich and Barenblatt, PSS is of 2 kinds: T

al The PSS of the 1st kind, with all the powers a, v, ...
being rational numbers defined from dimensions) =
(rational PSS).

b/ The PSS of the 2bd kind, with some of powers being
irrational and defined from dynamics (fractal PSS).
To relate RG with PSS, turn to solution of basic RG

FEQ } o
g(xt,g) = g(x,g(t,9)) - (1.6")

_ .



RG vs Power Self-similarity

rThe general solution of T

g(xt,g) = g(x,g(t, g)) . (1.6")

depends on arbitrary 1-argument function - see below.
Here, we look for partial solution, linear in 2nd
argument g(z,9) = gf(x) .
Function f(x) satisfies eq. f(xt) = f(x)f(t) , with
solution: f(z) =« and g(x,t) = gx¥ . In our case
the RG tran-n Is reduced to PSS one,

B R —{r—at ™t g—gt'} =5, B



RG vs PSS, contd

fThus, the PSS transf-n is a special case of RG one,T
Ry — Sy ={x —at™!, g — gt"} . (27)

Generally, In RG, Instead of a power law, one has
arbitrary functional dependence. Hence, one can
consider all the RG transf-s as functional
generalizations of PSS transf-n.

It IS natural, to refer to them as to transf-s of funct’l

scaling or Functional self-similarity(FSS) transf-n.

Lln short R = FSS J
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