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RG folklore
Invariance with respect to change of the reference scale µ

dF

dµ
= 0 . (1)

can be detailed as a linear partial DE
[

x
∂

∂x
− β(g)

∂

∂g

]

F (x, g) = 0 ; x = q2/µ2, g = gµ . (2)

β(gµ) = z
∂ḡ(z)

∂z
at z = µ2 . (3)

Running coupling ḡ is a function of 2 arguments : q2/µ2 = x

and gµ with property ḡ(1, g) = g. The ḡ satisfies eqs. (1),(2).
Due to this it is invariant coupling function.
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RG folklore; cont.

Besides,

x
∂ḡ(x, g)

∂x
= β(ḡ(x, g)) . (4)

Also of interest are covariant objects s(x, g) with
[

x
∂

∂x
− β(g)

∂

∂g
+ γs(g)

]

s(x, g) = 0 , (5)

γs(g) being anomalous dimension of s .
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Mathematical Grounds

Functional and Diff. Equations

The central is Funct. Eq (FE) for invariant coupling

ḡ(x, g) = ḡ
( x

t
, ḡ(t, g)

)

. (6)

Non-linear DEq (4) is obtained from it by differentiating over x

with t = x. In parallel, by diff-ing over t at t = 1 one gets

(partial) PDEq (2) with the Lie operator L(x, g)

L(x, g)ḡ(x, g) = 0; L(x, g) =

[

x
∂

∂x
− β(g)

∂

∂g

]

. (7)
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Functional Group Eqs

Due to this, Funct. eqs (6) and

s̄(x, g) = s̄(t, g) s̄
( x

t
, ḡ(t, g)

)

(8)

presents most general form of RG symmetry in QFT.
From (6), (8) stem (4) and

x
∂s(x, g)

∂x
= s(x, g) γs (ḡ(x, g)) , (9)

Meanwhile, these Funct. Eqs.(8) and (6)

ḡ(x, g) = ḡ
(x

t
, ḡ(t, g)

)

. (6)

just contain the group composition law and
have no physical contents !!
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RG transformation

Consider change [µi → µk , gi → gk] , as operation

with continuous positive parameter t , acting on

group element Gi(µi, gi) , specified by 2 coordinates.

Operation Rt

Rt · Gi = Gk ∼ Rt

{

µ2

i → µ2

k = tµ2

i , gi → gk = ḡ(t, gi)
}

(10)contains dilatation of µ , and funct’l transf-n of gµ .

The Rt group structure is provided just by eq.(6).

Indeed, if we put x = τ t , then its l.h.s. describes

the Rτt acting on g , while r.h.s one – Rτ ⊗ Rt g

Rτ t g = ḡ(τ t, g) ; Rτ⊗Rt g = Rτ ḡ(t, g) = ḡ (τ, ḡ(t, g))
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Lie Group of Transformations

Combination of

Rt · Gi = Gk ∼ Rt {µ
2

i → µ2

k = tµ2

i , gi → gk = ḡ(t, gi)} (10)

and

Rτ t g = ḡ(τ t, g) ; Rτ⊗Rt g = Rτ ḡ(t, g) = ḡ (τ, ḡ(t, g))

results in ḡ(x, g) = ḡ
(x

t
, ḡ(t, g)

)

. (6)

Hence, the eq.(6) provides the group composition

law Rτt = Rτ ⊗ Rt , that is operations Rt (10)) form

continuous Sophus Lie(1880) group of transformations
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Abstract formulation of composition law

Let T (l) be a transf-tion of an abstract set M of

elements Mi to itself, depending on continuous

real parameter l , varying in (−∞ < l < ∞) , That

is, for each M one can write

T (l)M = M ′ (M,M ′ ⊂ M) .

Assume, set M can be projected on numerical

axis, i.e., to each Mi there correspond a number gi .

Then T (l)g = g′ = G(l, g) ,
with G – continuous function of 2 arguments.
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Abstract form-n of composition law, cont’d

T (l)g = g′ = G(l, g) ,

with G – continuous function with property

G(0, g) = g , that relates to unity trans-n T (0) = E .

Trans-s T (l) form a group provided the composition

law T (λ) ⊕ T (l) = T (λ + l) , and funct’l eq for G

G{λ, G(l, g)} = G(λ + l, g) (11)

holds.
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Diff. Group Equations

According to Lie group theory, it’s sufficient to

consider infinitesimal (at λ � 1) version of (11) –

the Diff. eq.
∂G(l, g)

∂l
= β{G(l, g)} . (12)

with generator defined via derivative

β(g) =
∂G(ε, g)

∂ε
, at ε = 0.

After logarithmic change of variables
l = ln x , λ = ln t , G(l, g) = ḡ(x, g) , T (ln t) = Rt , (13)

we get multiplicative (6), (4) instead of additive (11), (12).
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Transformation of reparameterisation

A particular solution f(x) of some boundary

problem is specified by boundary condition

f(x0) = f0. It can be given as F (x/x0, f0) with

property F (1, γ) = γ . Now equation

F (x/x0, f0) = F (x/x1, f1)

expresses the reparameterization invariance as in the

explicit case F (x, γ) = Φ(ln x + γ)). Using relations

f1 = F (x1/x0, f0); ξ = x/x0, t = x1/x0 ,

we come to the funct’l eq.

F (ξ, f0) = F (ξ/t, F (t, f0)) (6 − bis),
– p. 10
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Transf-n of reparameterisation; cont’d

F (ξ, f0) = F (ξ/t, F (t, f0)) (6 − bis),

is equivalent to (6). The involved operation can

presented as

Gt : { ξ → ξ/t , f0 → f1 = F (t, f0) } . (14)

The additive version of these eqs is

R(l) : { q → q′ = q − l , g → g′ = G(l, g) } , (15)

and (11).
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The additive version

R(l) : { q → q′ = q − l , g → g′ = G(l, g) } , (16)

By change of variables q → x = eq, l → t = el and

of function (13) one gets (4), (6) and transf-n

Rt : { x′ = x/t , g′ = ḡ(t, g) } (17)

instead of eqs.(11), (12),(16).

One can treat eqs.(4),(6), (17) as multiplicative version of RG
eqs. for effective coupling in massless QFT with 1 coupling g .

Here, x = Q2/µ2 . For propagator amplitude one has
φ(q, g) → R(l)φ = z(l, g)φ(q′, g′) , (18)

that corresponds to (8).

– p. 12



Coimbra, 15 May 08

Simple Generalizations

”Massive” Case. For example in QFT, if we do not

neglect the particle mass m, we should insert one

more argument into the effective coupling ḡ which

now has to be considered as a function of 3

variables x = Q2/µ2, y = m2/µ2, g. The presence

of a "mass" argument y modifies group transf-n

Rt : { x′ = x/t , y′ = y/t , g′ = ḡ(t, y; g) } (19)

and the functional equation

ḡ(x, y; g) = ḡ
( x

t
,

y

t
; ḡ(t, y; g)

)

. (20)
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Simple Generalization, 1

ḡ(x, y; g) = ḡ
( x

t
,

y

t
; ḡ(t, y; g)

)

.

New parameter y enters also into the

transformation law of g .

Let QFT model has several masses (like, QCD).

Then there will be several mass arguments

y → {y} = y1, y2, . . . yn .

– p. 14



Coimbra, 15 May 08

Multi-coupling case

Another generalization relates to several coupling

constants case: g → {g} = g1, . . . gk . Here arises

"family" of effective couplings

ḡ → {ḡ} , ḡi = ḡi(x, y; {g}) , i = 1, 2, . . . k , (21)

satisfying the system of coupled funct’l eqs

ḡi(x, y; {g}) =

ḡi

(x

t
,

y

t
; . . . ḡj(t, y; {g}) . . .

)

. (22)
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Multi-coupling case; cont’d

This system is a generalization of (5) and (20) to

the case when every element Mi of M can be

described by k parameters, i.e., by the point {g} in

a k-dimensional real parameter space.

The RG transformation looks like

Rt :
{

x →
x

t
, y →

x

t
, {g} → {ḡ(t)}

}

;

ḡi(t) = ḡi(t, y; {g}). (23)
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1st Illustration: Elastic Rod

The symmetry of the FSS group transf’ns can be ’discovered’
in many problems taken from diverse fields of physics.

Figure 1: "Elastic rod" model

Imagine an elastic rod with a fixed point (point "0" in Fig. 1)
bent by some external force, e.g., gravity or pressure of a
moving gas or liquid.
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Elastic Rod, 2

The form of rod can be described by angle g

between tangent to the rod and vertical direction

considered as function of distance l along rod from

the fixation point, that is by function g(l). If the

properties of the rod material and of external forces

are homogeneous along its length (i.e.independent

of l), then g(l) can be expressed as function

G(l, g0) depending also on g0 , deviation angle at

fixation point from which distance l is measured.

Naturally, G should depend on other arguments, like extra forces and rod material

parameters, as well but in this context they are irrelevant.
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Elastic Rod, 3

Take two arbitrary points on the rod, "1" and "2" (see Fig.1
with l1 = ambda and l2 = λ + l. The angles gi at points "0",
"1" and "2" are related via G function :

g1 = G(λ, g0), g2 = G(λ + l, g0) = G(l, g1). (24)

To get the very r.h.s. of 2nd eq., one has to imagine that
fixation point now is "1" as in Fig. 2.

Figure 2: Group operation for the "Rod".
– p. 19
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Elastic Rod, 4

Figure 2: Group operation for the "Rod".

Combining all Eqs.
g1 = G(λ, g0), g2 = G(λ + l, g0) = G(l, g1) , (23)

we get group composition law ( 7) for the function G(l, g).
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Elastic Rod, 5

In course of deriving the 2nd of Eqs. ( 24) we have tacitly
assumed that rod is of infinite length. If we introduce a finite
length L - Fig. 3,

Figure 3: Rod with discrete inhomogeneity.

then G(l, g) must be replaced by function G(l, L, g) of 3
essential arguments, where the 2nd one is distance between
the fixation point and the free end.

– p. 21
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Elastic Rod, 6

Combining now

Figure 3: Rod with discrete inhomogeneity.

g1 = G(λ, L, g0), g2 = G(λ + l, L, g0) = G(l, L − λ, g1) (25)

we come to the functional equation

G(l + λ, L, g) = G(l, L − λ,G(λ, L, g)) , (26)

which is just an "additive" version of the massive QFT one

ḡ(x, y; g) = ḡ
( x

t
,

y

t
; ḡ(t, y; g)

)

. (19)

and can be transformed to it by log change of variables used to get (7) from (5).
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Breaking of Homogeneity

In (25) and (26) the 2nd argument L is not necessarily the rod length. It can be

treated as a distance from the fixation point to a place where the rod properties

undergo a discrete change (say, in thickness or in material).

Generally, the additional argument L describes the

discrete breaking of homogeneity property of the system.

It can take place at several points. Their

coordinates must be introduced as G additional

arguments: L → {L}. In the QFT case this

corresponds to the introduction of particle masses.
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RG symmetry as Functional Self-Similarity

RG symmetry and RG transf-n are close to the

notion of Self-Similarity well known in math. physics

since the end of XIX. The Self-Similarity transf-n is

a simultaneous power scaling of arguments

z = {x, t, . . .} and functions Vi(x, t, . . .)

Sλ : { x → xλ , t → tλa } ,
{

Vi(z) → V ‘

i (z
′) = λνiVi(z

′)
}

.

We call it Power Self-Similarity=PSS transformation.
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RG vs Power Self-Simil 2

According to Zeldovich and Barenblatt, PSS is of 2 kinds:

a/ The PSS of the 1st kind, with all the powers a, ν, ...

being rational numbers defined from dimensions) =

(rational PSS).

b/ The PSS of the 2bd kind, with some of powers being

irrational and defined from dynamics (fractal PSS).

To relate RG with PSS, turn to solution of basic RG

FEq
ḡ(xt, g) = ḡ(x, ḡ(t, g)) . (1.6′)

– p. 25



Coimbra, 15 May 08

RG vs Power Self-similarity
The general solution of

ḡ(xt, g) = ḡ(x, ḡ(t, g)) . (1.6′)

depends on arbitrary 1-argument function - see below.

Here, we look for partial solution, linear in 2nd

argument ḡ(x, g) = gf(x) .

Function f(x) satisfies eq. f(xt) = f(x)f(t) , with

solution: f(x) = xν and ḡ(x, t) = gxν . In our case

the RG tran-n is reduced to PSS one,

Rt → {x → xt−1, g → gtν} = St .
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RG vs PSS, cont’d

Thus, the PSS transf-n is a special case of RG one,

Rt → St = {x → xt−1, g → gtν} . (27)

Generally, in RG, instead of a power law, one has

arbitrary functional dependence. Hence, one can

consider all the RG transf-s as functional

generalizations of PSS transf-n.

It is natural, to refer to them as to transf-s of funct’l

scaling or Functional Self-Similarity(FSS) transf-n.

In short RG ≡ FSS

.
– p. 27
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