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Lecture 4: Causality and Analyticity

Microscopical Causality in local QFT

Analyticity from Causality

Dispersion Relation for forward scattering amplitude

Källen – Lehmann representation for propagator

Jost-Lehmann-Dyson repres’n; virtual scattering

Källen–Lehmann representation, invariant coupling
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Microscopical Causality in local QFT

The Fourier image
F (E) =

∫ ∞

−∞

eitEA(t) dt (1)

of forward scattering amplitude subdue to

non-relativistic “causality condition”
A(t) = 0 at t < 0

can be analytically continued from real E values to

upper half plane Q → z = E + iξ; ξ = =mz > 0 as

in integrand
F (z) =

∫ ∞

0

eitE−tξA(t) dt (2)

factor e−tξ provides convergence.
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Microscopical Causality in local QFT

Due to Analyticity, one can use Cauchy theorem

for F (E) =

∫ ∞

−∞

eitEA(t) dt (3)

with integration contour Γ in the upper half-plane
∮

Γ

f(z′)

z′ − z
dz′ = 0

and get Dispersion Relation

<ef(E) =
P

π

∫ ∞

−∞

=mf(E ′)

E − E ′
dE ′ =

P

π

∫ ∞

m

kσ(E ′)

E − E ′
dE ′

connecting two observable functions.
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Causality and Dispersion Relation

In obtaining this Dispersion Relation for forward

scattering amplitude

<ef(E) =
P

π

∫ ∞

m

k σ(E ′)

E − E ′
dE ′ , (4)

we assumed “good" asymptotic behavior and used Optical
Theorem

f(z) . C/z as |z| → ∞ and =mf(E) = k σ(E) .

In a more realistic case, one uses relativistic

causality and symmetry crossing property of

forward scattering.
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Causality in QFT

Causality in local QFT states that signal velocity is

limited by c and formulated as Local Commutativity

for Lagrangian

[L(x),L(y)] ≡ L(x)L(y) − L(y)L(x) = 0, (5)

for space-like (x − y)2 = (x0 − y0)
2 − (x − y)2 < 0 intervals.

Eq.(5) is provided by Loc. Comm. conditions for

field operators

[φ(x), φ(y)] = 0, (x − y)2 < 0 . (6)
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Stueckelberg-Feynman propagator

Along with Pauli-Willars commutator

D(x − y) = 1
i 〈0 [ (φ(x) , φ(y))| 0〉 , (7)

vanishing outside light cone
D(x − y) = 0, at (x − y)2 = (x0 − y0)

2 − (x − y)2 < 0 . (8)

In calculation, we use Stueckelberg–Feynman

propagator

Dc(x− y) = DF (x− y) = 1
i 〈0 |T [φ(x)φ(y)]| 0〉 , (9)

the vacuum average of time-ordered product

T [φ(x)φ(y)]
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Källen – Lehmann eq. for propagator, 2

For the causal Stueckelberg-Feynman propagator

the Källen–Lehmann (KL) spectral representation is

Dc(q
2) =

1

π

∫ ∞

0

dσ

σ − q2 − iε
. (10)

Its “dressed” counterpart looks like

Dc(q
2, αs) =

1

π

∫ ∞

0

dσ
ρ(σ, αs)

σ − q2 − iε
(11)

with ρ(σ, αs) behaving as 1/ ln2 σ , that allows one

to use it in the non-subtracted form.
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Jost–Lehmann–Dyson representat’n for virtual scattering

For Deep-Inelastic Scattering (DIS) probability, one uses
hadronic tensor

Wµν(q, P ) ∼

∫

dz expiq·z
〈

P, σ
∣

∣

∣

[

Jµ(
z

2
), Jν(−

z

2
)
]∣

∣

∣
P, σ

〉

(12)

defined via current commutator. For structure functions Wn , a
more involved Jost–Lehmann–Dyson representation holds
W (ν,Q2) = (ν = P · q > 0; Q2 = −q2 > 0)

=

1
∫

0

dρρ2

∞
∫

λ2

min

dλ2

1
∫

−1

dzδ
(

Q2 +M2ρ2 + λ2 − 2zρ
√

ν2 +M2Q2

)

ψ(ρ, λ2) .

λ2

min
= M2

(

1 −

√

1 − ρ2

)

2

.

It turns to be useful for formulating analyticity of the structure
functions moments.
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Källen – Lehmann representation for invariant coupling

In QED, an invariant coupling = product of coupling

constant and transverse photon propagator

amplitude ᾱ(Q2, α) = α dtr(Q
2 = −q2, α) , satisfies

KL eq.(10) by construction

ᾱ(Q2, α) =
1

π

∫ ∞

0

dσ
ρ(σ, α)

σ + Q2 − iε
. (13)

As it can be shown, the QCD invariant coupling

ᾱs(Q
2, αs) satisfies the KL representation as well

ᾱs(Q
2, αs) =

1

π

∫ ∞

0

dσ
ρ(σ, αs)

σ + Q2 − iε
. (14)
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RENORMALIZATION GROUP METHOD

Introductive Illustration For this, consider effective

coupling ḡ in the UV region with 1-loop log

contribution ḡ
[1]
PT (x, g) = g + g2β ln x. (15)

By simple arithmetics within RG FEq.

ḡ(x, g) = ḡ
(x

t
, ḡ(t, g)

)

. (1.6)
one gets

Disc[ḡ
[1]
PT ] = ḡ

[1]
PT (x, g) − ḡ

[1]
PT

(x

t
, ḡ

[1]
PT (t, g)

)

=

= [g + g2β ln x]− [g + g2β ln x+2g3β2 ln t ln(x/t)] 6= 0

- error of g3 order.
– p. 10
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RENORM-GROUP METHOD, 2

This error of g3 order is liquidated by adding next

order term g3β2 ln2 x into the r.h.s. of (15):

ḡ
[2]
PT = g+g2β ln x+g3β2 ln2 x → Disc[ḡ

[2]
PT ] ∼ g4 ln4 x.

This "improved" expression yields g4 error and can

be killed by adding g4 ln3 term into (1) and so on.

Thus, on the one hand, finite polynomials cannot

satisfy the condition of RG invariance. On the

other, we conclude that FEq (1.6) is a tool for

iterative restoring of RG-invariant expression in

form of infinite series.
– p. 11
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RENORM-GROUP METHOD,3

This example illustrates a general situation. As a

rule, approximate solutions do not satisfy RG

symmetry. In our case, this is happened in UV limit

at ln x → ∞ where the observed discrepancy

becomes quantitatively important. Note, that sum

of mentioned iterative series is rather simple

ḡ
[n]
PT = g

n
∑

k=0

(g β ln x)k; lim
n→∞

ḡ
[n]
PT =

g

1 − g β ln x
.
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RENORM-GROUP METHOD,3

This is famous 1-loop approximation for the

effective coupling in QFT

ḡ(1)(x, g) =
g

1 − g β ln x
. (16)

It is instructive exercise, to check that it exactly

satisfies the FEq (1.6). At the same time,

expression (16) gives birth to grave issue - the

problem of unphysical pole (“Landau ghost”) at

x = x∗ = e1/g β

– p. 13


	Large sf Lecture 4:  Causality and Analyticity
	Large sf Microscopical Causality in local QFT
	Large sf Microscopical Causality in local QFT
	Large sf Causality and Dispersion Relation
	Large sf Causality in QFT
	Large sf Stueckelberg-Feynman propagator
	large sf K"allen -- Lehmann eq. {DGr for propagator}, 2 
	large sf Jost--Lehmann--Dyson representat'n  {DGr for virtual scattering}
	large sf K"allen -- Lehmann representation for {DG invariant coupling}
	Large sf RENORMALIZATION GROUP METHOD
	large sf RENORM-GROUP METHOD, 2
	large sf RENORM-GROUP METHOD,3
	large sf RENORM-GROUP METHOD,3

